1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package seccomp provides generation of basic seccomp filters. Currently,
// only little endian systems are supported.
package seccomp
import (
"fmt"
"reflect"
"sort"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/bpf"
"gvisor.dev/gvisor/pkg/log"
)
const (
// skipOneInst is the offset to take for skipping one instruction.
skipOneInst = 1
// defaultLabel is the label for the default action.
defaultLabel = "default_action"
)
// Install generates BPF code based on the set of syscalls provided. It only
// allows syscalls that conform to the specification. Syscalls that violate the
// specification will trigger RET_KILL_PROCESS, except for the cases below.
//
// RET_TRAP is used in violations, instead of RET_KILL_PROCESS, in the
// following cases:
// 1. Kernel doesn't support RET_KILL_PROCESS: RET_KILL_THREAD only kills the
// offending thread and often keeps the sentry hanging.
// 2. Debug: RET_TRAP generates a panic followed by a stack trace which is
// much easier to debug then RET_KILL_PROCESS which can't be caught.
//
// Be aware that RET_TRAP sends SIGSYS to the process and it may be ignored,
// making it possible for the process to continue running after a violation.
// However, it will leave a SECCOMP audit event trail behind. In any case, the
// syscall is still blocked from executing.
func Install(rules SyscallRules) error {
defaultAction, err := defaultAction()
if err != nil {
return err
}
// Uncomment to get stack trace when there is a violation.
// defaultAction = linux.BPFAction(linux.SECCOMP_RET_TRAP)
log.Infof("Installing seccomp filters for %d syscalls (action=%v)", len(rules), defaultAction)
instrs, err := BuildProgram([]RuleSet{
{
Rules: rules,
Action: linux.SECCOMP_RET_ALLOW,
},
}, defaultAction, defaultAction)
if log.IsLogging(log.Debug) {
programStr, errDecode := bpf.DecodeInstructions(instrs)
if errDecode != nil {
programStr = fmt.Sprintf("Error: %v\n%s", errDecode, programStr)
}
log.Debugf("Seccomp program dump:\n%s", programStr)
}
if err != nil {
return err
}
// Perform the actual installation.
if errno := SetFilter(instrs); errno != 0 {
return fmt.Errorf("failed to set filter: %v", errno)
}
log.Infof("Seccomp filters installed.")
return nil
}
func defaultAction() (linux.BPFAction, error) {
available, err := isKillProcessAvailable()
if err != nil {
return 0, err
}
if available {
return linux.SECCOMP_RET_KILL_PROCESS, nil
}
return linux.SECCOMP_RET_TRAP, nil
}
// RuleSet is a set of rules and associated action.
type RuleSet struct {
Rules SyscallRules
Action linux.BPFAction
// Vsyscall indicates that a check is made for a function being called
// from kernel mappings. This is where the vsyscall page is located
// (and typically) emulated, so this RuleSet will not match any
// functions not dispatched from the vsyscall page.
Vsyscall bool
}
// SyscallName gives names to system calls. It is used purely for debugging purposes.
//
// An alternate namer can be provided to the package at initialization time.
var SyscallName = func(sysno uintptr) string {
return fmt.Sprintf("syscall_%d", sysno)
}
// BuildProgram builds a BPF program from the given map of actions to matching
// SyscallRules. The single generated program covers all provided RuleSets.
func BuildProgram(rules []RuleSet, defaultAction, badArchAction linux.BPFAction) ([]linux.BPFInstruction, error) {
program := bpf.NewProgramBuilder()
// Be paranoid and check that syscall is done in the expected architecture.
//
// A = seccomp_data.arch
// if (A != AUDIT_ARCH) goto defaultAction.
program.AddStmt(bpf.Ld|bpf.Abs|bpf.W, seccompDataOffsetArch)
// defaultLabel is at the bottom of the program. The size of program
// may exceeds 255 lines, which is the limit of a condition jump.
program.AddJump(bpf.Jmp|bpf.Jeq|bpf.K, LINUX_AUDIT_ARCH, skipOneInst, 0)
program.AddStmt(bpf.Ret|bpf.K, uint32(badArchAction))
if err := buildIndex(rules, program); err != nil {
return nil, err
}
// Exhausted: return defaultAction.
if err := program.AddLabel(defaultLabel); err != nil {
return nil, err
}
program.AddStmt(bpf.Ret|bpf.K, uint32(defaultAction))
return program.Instructions()
}
// buildIndex builds a BST to quickly search through all syscalls.
func buildIndex(rules []RuleSet, program *bpf.ProgramBuilder) error {
// Do nothing if rules is empty.
if len(rules) == 0 {
return nil
}
// Build a list of all application system calls, across all given rule
// sets. We have a simple BST, but may dispatch individual matchers
// with different actions. The matchers are evaluated linearly.
requiredSyscalls := make(map[uintptr]struct{})
for _, rs := range rules {
for sysno := range rs.Rules {
requiredSyscalls[sysno] = struct{}{}
}
}
syscalls := make([]uintptr, 0, len(requiredSyscalls))
for sysno := range requiredSyscalls {
syscalls = append(syscalls, sysno)
}
sort.Slice(syscalls, func(i, j int) bool { return syscalls[i] < syscalls[j] })
for _, sysno := range syscalls {
for _, rs := range rules {
// Print only if there is a corresponding set of rules.
if _, ok := rs.Rules[sysno]; ok {
log.Debugf("syscall filter %v: %s => 0x%x", SyscallName(sysno), rs.Rules[sysno], rs.Action)
}
}
}
root := createBST(syscalls)
root.root = true
// Load syscall number into A and run through BST.
//
// A = seccomp_data.nr
program.AddStmt(bpf.Ld|bpf.Abs|bpf.W, seccompDataOffsetNR)
return root.traverse(buildBSTProgram, rules, program)
}
// createBST converts sorted syscall slice into a balanced BST.
// Panics if syscalls is empty.
func createBST(syscalls []uintptr) *node {
i := len(syscalls) / 2
parent := node{value: syscalls[i]}
if i > 0 {
parent.left = createBST(syscalls[:i])
}
if i+1 < len(syscalls) {
parent.right = createBST(syscalls[i+1:])
}
return &parent
}
func vsyscallViolationLabel(ruleSetIdx int, sysno uintptr) string {
return fmt.Sprintf("vsyscallViolation_%v_%v", ruleSetIdx, sysno)
}
func ruleViolationLabel(ruleSetIdx int, sysno uintptr, idx int) string {
return fmt.Sprintf("ruleViolation_%v_%v_%v", ruleSetIdx, sysno, idx)
}
func ruleLabel(ruleSetIdx int, sysno uintptr, idx int, name string) string {
return fmt.Sprintf("rule_%v_%v_%v_%v", ruleSetIdx, sysno, idx, name)
}
func checkArgsLabel(sysno uintptr) string {
return fmt.Sprintf("checkArgs_%v", sysno)
}
// addSyscallArgsCheck adds argument checks for a single system call. It does
// not insert a jump to the default action at the end and it is the
// responsibility of the caller to insert an appropriate jump after calling
// this function.
func addSyscallArgsCheck(p *bpf.ProgramBuilder, rules []Rule, action linux.BPFAction, ruleSetIdx int, sysno uintptr) error {
for ruleidx, rule := range rules {
labelled := false
for i, arg := range rule {
if arg != nil {
// Break out early if using MatchAny since no further
// instructions are required.
if _, ok := arg.(MatchAny); ok {
continue
}
// Determine the data offset for low and high bits of input.
dataOffsetLow := seccompDataOffsetArgLow(i)
dataOffsetHigh := seccompDataOffsetArgHigh(i)
if i == RuleIP {
dataOffsetLow = seccompDataOffsetIPLow
dataOffsetHigh = seccompDataOffsetIPHigh
}
// Add the conditional operation. Input values to the BPF
// program are 64bit values. However, comparisons in BPF can
// only be done on 32bit values. This means that we need to do
// multiple BPF comparisons in order to do one logical 64bit
// comparison.
switch a := arg.(type) {
case EqualTo:
// EqualTo checks that both the higher and lower 32bits are equal.
high, low := uint32(a>>32), uint32(a)
// Assert that the lower 32bits are equal.
// arg_low == low ? continue : violation
p.AddStmt(bpf.Ld|bpf.Abs|bpf.W, dataOffsetLow)
p.AddJumpFalseLabel(bpf.Jmp|bpf.Jeq|bpf.K, low, 0, ruleViolationLabel(ruleSetIdx, sysno, ruleidx))
// Assert that the lower 32bits are also equal.
// arg_high == high ? continue/success : violation
p.AddStmt(bpf.Ld|bpf.Abs|bpf.W, dataOffsetHigh)
p.AddJumpFalseLabel(bpf.Jmp|bpf.Jeq|bpf.K, high, 0, ruleViolationLabel(ruleSetIdx, sysno, ruleidx))
labelled = true
case NotEqual:
// NotEqual checks that either the higher or lower 32bits
// are *not* equal.
high, low := uint32(a>>32), uint32(a)
labelGood := fmt.Sprintf("ne%v", i)
// Check if the higher 32bits are (not) equal.
// arg_low == low ? continue : success
p.AddStmt(bpf.Ld|bpf.Abs|bpf.W, dataOffsetLow)
p.AddJumpFalseLabel(bpf.Jmp|bpf.Jeq|bpf.K, low, 0, ruleLabel(ruleSetIdx, sysno, ruleidx, labelGood))
// Assert that the lower 32bits are not equal (assuming
// higher bits are equal).
// arg_high == high ? violation : continue/success
p.AddStmt(bpf.Ld|bpf.Abs|bpf.W, dataOffsetHigh)
p.AddJumpTrueLabel(bpf.Jmp|bpf.Jeq|bpf.K, high, ruleViolationLabel(ruleSetIdx, sysno, ruleidx), 0)
p.AddLabel(ruleLabel(ruleSetIdx, sysno, ruleidx, labelGood))
labelled = true
case GreaterThan:
// GreaterThan checks that the higher 32bits is greater
// *or* that the higher 32bits are equal and the lower
// 32bits are greater.
high, low := uint32(a>>32), uint32(a)
labelGood := fmt.Sprintf("gt%v", i)
// Assert the higher 32bits are greater than or equal.
// arg_high >= high ? continue : violation (arg_high < high)
p.AddStmt(bpf.Ld|bpf.Abs|bpf.W, dataOffsetHigh)
p.AddJumpFalseLabel(bpf.Jmp|bpf.Jge|bpf.K, high, 0, ruleViolationLabel(ruleSetIdx, sysno, ruleidx))
// Assert that the lower 32bits are greater.
// arg_high == high ? continue : success (arg_high > high)
p.AddJumpFalseLabel(bpf.Jmp|bpf.Jeq|bpf.K, high, 0, ruleLabel(ruleSetIdx, sysno, ruleidx, labelGood))
// arg_low > low ? continue/success : violation (arg_high == high and arg_low <= low)
p.AddStmt(bpf.Ld|bpf.Abs|bpf.W, dataOffsetLow)
p.AddJumpFalseLabel(bpf.Jmp|bpf.Jgt|bpf.K, low, 0, ruleViolationLabel(ruleSetIdx, sysno, ruleidx))
p.AddLabel(ruleLabel(ruleSetIdx, sysno, ruleidx, labelGood))
labelled = true
case GreaterThanOrEqual:
// GreaterThanOrEqual checks that the higher 32bits is
// greater *or* that the higher 32bits are equal and the
// lower 32bits are greater than or equal.
high, low := uint32(a>>32), uint32(a)
labelGood := fmt.Sprintf("ge%v", i)
// Assert the higher 32bits are greater than or equal.
// arg_high >= high ? continue : violation (arg_high < high)
p.AddStmt(bpf.Ld|bpf.Abs|bpf.W, dataOffsetHigh)
p.AddJumpFalseLabel(bpf.Jmp|bpf.Jge|bpf.K, high, 0, ruleViolationLabel(ruleSetIdx, sysno, ruleidx))
// arg_high == high ? continue : success (arg_high > high)
p.AddJumpFalseLabel(bpf.Jmp|bpf.Jeq|bpf.K, high, 0, ruleLabel(ruleSetIdx, sysno, ruleidx, labelGood))
// Assert that the lower 32bits are greater (assuming the
// higher bits are equal).
// arg_low >= low ? continue/success : violation (arg_high == high and arg_low < low)
p.AddStmt(bpf.Ld|bpf.Abs|bpf.W, dataOffsetLow)
p.AddJumpFalseLabel(bpf.Jmp|bpf.Jge|bpf.K, low, 0, ruleViolationLabel(ruleSetIdx, sysno, ruleidx))
p.AddLabel(ruleLabel(ruleSetIdx, sysno, ruleidx, labelGood))
labelled = true
case LessThan:
// LessThan checks that the higher 32bits is less *or* that
// the higher 32bits are equal and the lower 32bits are
// less.
high, low := uint32(a>>32), uint32(a)
labelGood := fmt.Sprintf("lt%v", i)
// Assert the higher 32bits are less than or equal.
// arg_high > high ? violation : continue
p.AddStmt(bpf.Ld|bpf.Abs|bpf.W, dataOffsetHigh)
p.AddJumpTrueLabel(bpf.Jmp|bpf.Jgt|bpf.K, high, ruleViolationLabel(ruleSetIdx, sysno, ruleidx), 0)
// arg_high == high ? continue : success (arg_high < high)
p.AddJumpFalseLabel(bpf.Jmp|bpf.Jeq|bpf.K, high, 0, ruleLabel(ruleSetIdx, sysno, ruleidx, labelGood))
// Assert that the lower 32bits are less (assuming the
// higher bits are equal).
// arg_low >= low ? violation : continue
p.AddStmt(bpf.Ld|bpf.Abs|bpf.W, dataOffsetLow)
p.AddJumpTrueLabel(bpf.Jmp|bpf.Jge|bpf.K, low, ruleViolationLabel(ruleSetIdx, sysno, ruleidx), 0)
p.AddLabel(ruleLabel(ruleSetIdx, sysno, ruleidx, labelGood))
labelled = true
case LessThanOrEqual:
// LessThan checks that the higher 32bits is less *or* that
// the higher 32bits are equal and the lower 32bits are
// less than or equal.
high, low := uint32(a>>32), uint32(a)
labelGood := fmt.Sprintf("le%v", i)
// Assert the higher 32bits are less than or equal.
// assert arg_high > high ? violation : continue
p.AddStmt(bpf.Ld|bpf.Abs|bpf.W, dataOffsetHigh)
p.AddJumpTrueLabel(bpf.Jmp|bpf.Jgt|bpf.K, high, ruleViolationLabel(ruleSetIdx, sysno, ruleidx), 0)
// arg_high == high ? continue : success
p.AddJumpFalseLabel(bpf.Jmp|bpf.Jeq|bpf.K, high, 0, ruleLabel(ruleSetIdx, sysno, ruleidx, labelGood))
// Assert the lower bits are less than or equal (assuming
// the higher bits are equal).
// arg_low > low ? violation : success
p.AddStmt(bpf.Ld|bpf.Abs|bpf.W, dataOffsetLow)
p.AddJumpTrueLabel(bpf.Jmp|bpf.Jgt|bpf.K, low, ruleViolationLabel(ruleSetIdx, sysno, ruleidx), 0)
p.AddLabel(ruleLabel(ruleSetIdx, sysno, ruleidx, labelGood))
labelled = true
case maskedEqual:
// MaskedEqual checks that the bitwise AND of the value and
// mask are equal for both the higher and lower 32bits.
high, low := uint32(a.value>>32), uint32(a.value)
maskHigh, maskLow := uint32(a.mask>>32), uint32(a.mask)
// Assert that the lower 32bits are equal when masked.
// A <- arg_low.
p.AddStmt(bpf.Ld|bpf.Abs|bpf.W, dataOffsetLow)
// A <- arg_low & maskLow
p.AddStmt(bpf.Alu|bpf.And|bpf.K, maskLow)
// Assert that arg_low & maskLow == low.
p.AddJumpFalseLabel(bpf.Jmp|bpf.Jeq|bpf.K, low, 0, ruleViolationLabel(ruleSetIdx, sysno, ruleidx))
// Assert that the higher 32bits are equal when masked.
// A <- arg_high
p.AddStmt(bpf.Ld|bpf.Abs|bpf.W, dataOffsetHigh)
// A <- arg_high & maskHigh
p.AddStmt(bpf.Alu|bpf.And|bpf.K, maskHigh)
// Assert that arg_high & maskHigh == high.
p.AddJumpFalseLabel(bpf.Jmp|bpf.Jeq|bpf.K, high, 0, ruleViolationLabel(ruleSetIdx, sysno, ruleidx))
labelled = true
default:
return fmt.Errorf("unknown syscall rule type: %v", reflect.TypeOf(a))
}
}
}
// Matched, emit the given action.
p.AddStmt(bpf.Ret|bpf.K, uint32(action))
// Label the end of the rule if necessary. This is added for
// the jumps above when the argument check fails.
if labelled {
if err := p.AddLabel(ruleViolationLabel(ruleSetIdx, sysno, ruleidx)); err != nil {
return err
}
}
}
return nil
}
// buildBSTProgram converts a binary tree started in 'root' into BPF code. The outline of the code
// is as follows:
//
// // SYS_PIPE(22), root
// (A == 22) ? goto argument check : continue
// (A > 22) ? goto index_35 : goto index_9
//
// index_9: // SYS_MMAP(9), leaf
// A == 9) ? goto argument check : defaultLabel
//
// index_35: // SYS_NANOSLEEP(35), single child
// (A == 35) ? goto argument check : continue
// (A > 35) ? goto index_50 : goto defaultLabel
//
// index_50: // SYS_LISTEN(50), leaf
// (A == 50) ? goto argument check : goto defaultLabel
//
func buildBSTProgram(n *node, rules []RuleSet, program *bpf.ProgramBuilder) error {
// Root node is never referenced by label, skip it.
if !n.root {
if err := program.AddLabel(n.label()); err != nil {
return err
}
}
sysno := n.value
program.AddJumpTrueLabel(bpf.Jmp|bpf.Jeq|bpf.K, uint32(sysno), checkArgsLabel(sysno), 0)
if n.left == nil && n.right == nil {
// Leaf nodes don't require extra check.
program.AddDirectJumpLabel(defaultLabel)
} else {
// Non-leaf node. Check which turn to take otherwise. Using direct jumps
// in case that the offset may exceed the limit of a conditional jump (255)
program.AddJump(bpf.Jmp|bpf.Jgt|bpf.K, uint32(sysno), 0, skipOneInst)
program.AddDirectJumpLabel(n.right.label())
program.AddDirectJumpLabel(n.left.label())
}
if err := program.AddLabel(checkArgsLabel(sysno)); err != nil {
return err
}
emitted := false
for ruleSetIdx, rs := range rules {
if _, ok := rs.Rules[sysno]; ok {
// If there are no rules, then this will always match.
// Remember we've done this so that we can emit a
// sensible error. We can't catch all overlaps, but we
// can catch this one at least.
if emitted {
return fmt.Errorf("unreachable action for %v: 0x%x (rule set %d)", SyscallName(sysno), rs.Action, ruleSetIdx)
}
// Emit a vsyscall check if this rule requires a
// Vsyscall match. This rule ensures that the top bit
// is set in the instruction pointer, which is where
// the vsyscall page will be mapped.
if rs.Vsyscall {
program.AddStmt(bpf.Ld|bpf.Abs|bpf.W, seccompDataOffsetIPHigh)
program.AddJumpFalseLabel(bpf.Jmp|bpf.Jset|bpf.K, 0x80000000, 0, vsyscallViolationLabel(ruleSetIdx, sysno))
}
// Emit matchers.
if len(rs.Rules[sysno]) == 0 {
// This is a blanket action.
program.AddStmt(bpf.Ret|bpf.K, uint32(rs.Action))
emitted = true
} else {
// Add an argument check for these particular
// arguments. This will continue execution and
// check the next rule set. We need to ensure
// that at the very end, we insert a direct
// jump label for the unmatched case.
if err := addSyscallArgsCheck(program, rs.Rules[sysno], rs.Action, ruleSetIdx, sysno); err != nil {
return err
}
}
// If there was a Vsyscall check for this rule, then we
// need to add an appropriate label for the jump above.
if rs.Vsyscall {
if err := program.AddLabel(vsyscallViolationLabel(ruleSetIdx, sysno)); err != nil {
return err
}
}
}
}
// Not matched? We only need to insert a jump to the default label if
// not default action has been emitted for this call.
if !emitted {
program.AddDirectJumpLabel(defaultLabel)
}
return nil
}
// node represents a tree node.
type node struct {
value uintptr
left *node
right *node
root bool
}
// label returns the label corresponding to this node.
//
// If n is nil, then the defaultLabel is returned.
func (n *node) label() string {
if n == nil {
return defaultLabel
}
return fmt.Sprintf("index_%v", n.value)
}
type traverseFunc func(*node, []RuleSet, *bpf.ProgramBuilder) error
func (n *node) traverse(fn traverseFunc, rules []RuleSet, p *bpf.ProgramBuilder) error {
if n == nil {
return nil
}
if err := fn(n, rules, p); err != nil {
return err
}
if err := n.left.traverse(fn, rules, p); err != nil {
return err
}
return n.right.traverse(fn, rules, p)
}
|