1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:build 386 || amd64
// +build 386 amd64
package ring0
import (
"gvisor.dev/gvisor/pkg/cpuid"
)
// Useful bits.
const (
_CR0_PE = 1 << 0
_CR0_ET = 1 << 4
_CR0_NE = 1 << 5
_CR0_AM = 1 << 18
_CR0_PG = 1 << 31
_CR4_PSE = 1 << 4
_CR4_PAE = 1 << 5
_CR4_PGE = 1 << 7
_CR4_OSFXSR = 1 << 9
_CR4_OSXMMEXCPT = 1 << 10
_CR4_FSGSBASE = 1 << 16
_CR4_PCIDE = 1 << 17
_CR4_OSXSAVE = 1 << 18
_CR4_SMEP = 1 << 20
_RFLAGS_AC = 1 << 18
_RFLAGS_NT = 1 << 14
_RFLAGS_IOPL0 = 1 << 12
_RFLAGS_IOPL1 = 1 << 13
_RFLAGS_IOPL = _RFLAGS_IOPL0 | _RFLAGS_IOPL1
_RFLAGS_DF = 1 << 10
_RFLAGS_IF = 1 << 9
_RFLAGS_STEP = 1 << 8
_RFLAGS_RESERVED = 1 << 1
_EFER_SCE = 0x001
_EFER_LME = 0x100
_EFER_LMA = 0x400
_EFER_NX = 0x800
_MSR_STAR = 0xc0000081
_MSR_LSTAR = 0xc0000082
_MSR_CSTAR = 0xc0000083
_MSR_SYSCALL_MASK = 0xc0000084
_MSR_PLATFORM_INFO = 0xce
_MSR_MISC_FEATURES = 0x140
_PLATFORM_INFO_CPUID_FAULT = 1 << 31
_MISC_FEATURE_CPUID_TRAP = 0x1
)
const (
// KernelFlagsSet should always be set in the kernel.
KernelFlagsSet = _RFLAGS_RESERVED
// UserFlagsSet are always set in userspace.
//
// _RFLAGS_IOPL is a set of two bits and it shows the I/O privilege
// level. The Current Privilege Level (CPL) of the task must be less
// than or equal to the IOPL in order for the task or program to access
// I/O ports.
//
// Here, _RFLAGS_IOPL0 is used only to determine whether the task is
// running in the kernel or userspace mode. In the user mode, the CPL is
// always 3 and it doesn't matter what IOPL is set if it is bellow CPL.
//
// We need to have one bit which will be always different in user and
// kernel modes. And we have to remember that even though we have
// KernelFlagsClear, we still can see some of these flags in the kernel
// mode. This can happen when the goruntime switches on a goroutine
// which has been saved in the host mode. On restore, the popf
// instruction is used to restore flags and this means that all flags
// what the goroutine has in the host mode will be restored in the
// kernel mode.
//
// _RFLAGS_IOPL0 is never set in host and kernel modes and we always set
// it in the user mode. So if this flag is set, the task is running in
// the user mode and if it isn't set, the task is running in the kernel
// mode.
UserFlagsSet = _RFLAGS_RESERVED | _RFLAGS_IF | _RFLAGS_IOPL0
// KernelFlagsClear should always be clear in the kernel.
KernelFlagsClear = _RFLAGS_STEP | _RFLAGS_IF | _RFLAGS_IOPL | _RFLAGS_AC | _RFLAGS_NT
// UserFlagsClear are always cleared in userspace.
UserFlagsClear = _RFLAGS_NT | _RFLAGS_IOPL1
)
// IsKernelFlags returns true if rflags coresponds to the kernel mode.
//
// go:nosplit
func IsKernelFlags(rflags uint64) bool {
return rflags&_RFLAGS_IOPL0 == 0
}
// Vector is an exception vector.
type Vector uintptr
// Exception vectors.
const (
DivideByZero Vector = iota
Debug
NMI
Breakpoint
Overflow
BoundRangeExceeded
InvalidOpcode
DeviceNotAvailable
DoubleFault
CoprocessorSegmentOverrun
InvalidTSS
SegmentNotPresent
StackSegmentFault
GeneralProtectionFault
PageFault
_
X87FloatingPointException
AlignmentCheck
MachineCheck
SIMDFloatingPointException
VirtualizationException
SecurityException = 0x1e
SyscallInt80 = 0x80
_NR_INTERRUPTS = 0x100
)
// System call vectors.
const (
Syscall Vector = _NR_INTERRUPTS
)
// VirtualAddressBits returns the number bits available for virtual addresses.
//
// Note that sign-extension semantics apply to the highest order bit.
//
// FIXME(b/69382326): This should use the cpuid passed to Init.
func VirtualAddressBits() uint32 {
ax, _, _, _ := cpuid.HostID(0x80000008, 0)
return (ax >> 8) & 0xff
}
// PhysicalAddressBits returns the number of bits available for physical addresses.
//
// FIXME(b/69382326): This should use the cpuid passed to Init.
func PhysicalAddressBits() uint32 {
ax, _, _, _ := cpuid.HostID(0x80000008, 0)
return ax & 0xff
}
// Selector is a segment Selector.
type Selector uint16
// SegmentDescriptor is a segment descriptor.
type SegmentDescriptor struct {
bits [2]uint32
}
// descriptorTable is a collection of descriptors.
type descriptorTable [32]SegmentDescriptor
// SegmentDescriptorFlags are typed flags within a descriptor.
type SegmentDescriptorFlags uint32
// SegmentDescriptorFlag declarations.
const (
SegmentDescriptorAccess SegmentDescriptorFlags = 1 << 8 // Access bit (always set).
SegmentDescriptorWrite = 1 << 9 // Write permission.
SegmentDescriptorExpandDown = 1 << 10 // Grows down, not used.
SegmentDescriptorExecute = 1 << 11 // Execute permission.
SegmentDescriptorSystem = 1 << 12 // Zero => system, 1 => user code/data.
SegmentDescriptorPresent = 1 << 15 // Present.
SegmentDescriptorAVL = 1 << 20 // Available.
SegmentDescriptorLong = 1 << 21 // Long mode.
SegmentDescriptorDB = 1 << 22 // 16 or 32-bit.
SegmentDescriptorG = 1 << 23 // Granularity: page or byte.
)
// Base returns the descriptor's base linear address.
func (d *SegmentDescriptor) Base() uint32 {
return d.bits[1]&0xFF000000 | (d.bits[1]&0x000000FF)<<16 | d.bits[0]>>16
}
// Limit returns the descriptor size.
func (d *SegmentDescriptor) Limit() uint32 {
l := d.bits[0]&0xFFFF | d.bits[1]&0xF0000
if d.bits[1]&uint32(SegmentDescriptorG) != 0 {
l <<= 12
l |= 0xFFF
}
return l
}
// Flags returns descriptor flags.
func (d *SegmentDescriptor) Flags() SegmentDescriptorFlags {
return SegmentDescriptorFlags(d.bits[1] & 0x00F09F00)
}
// DPL returns the descriptor privilege level.
func (d *SegmentDescriptor) DPL() int {
return int((d.bits[1] >> 13) & 3)
}
func (d *SegmentDescriptor) setNull() {
d.bits[0] = 0
d.bits[1] = 0
}
func (d *SegmentDescriptor) set(base, limit uint32, dpl int, flags SegmentDescriptorFlags) {
flags |= SegmentDescriptorPresent
if limit>>12 != 0 {
limit >>= 12
flags |= SegmentDescriptorG
}
d.bits[0] = base<<16 | limit&0xFFFF
d.bits[1] = base&0xFF000000 | (base>>16)&0xFF | limit&0x000F0000 | uint32(flags) | uint32(dpl)<<13
}
func (d *SegmentDescriptor) setCode32(base, limit uint32, dpl int) {
d.set(base, limit, dpl,
SegmentDescriptorDB|
SegmentDescriptorExecute|
SegmentDescriptorSystem)
}
func (d *SegmentDescriptor) setCode64(base, limit uint32, dpl int) {
d.set(base, limit, dpl,
SegmentDescriptorG|
SegmentDescriptorLong|
SegmentDescriptorExecute|
SegmentDescriptorSystem)
}
func (d *SegmentDescriptor) setData(base, limit uint32, dpl int) {
d.set(base, limit, dpl,
SegmentDescriptorWrite|
SegmentDescriptorSystem)
}
// setHi is only used for the TSS segment, which is magically 64-bits.
func (d *SegmentDescriptor) setHi(base uint32) {
d.bits[0] = base
d.bits[1] = 0
}
// Gate64 is a 64-bit task, trap, or interrupt gate.
type Gate64 struct {
bits [4]uint32
}
// idt64 is a 64-bit interrupt descriptor table.
type idt64 [_NR_INTERRUPTS]Gate64
func (g *Gate64) setInterrupt(cs Selector, rip uint64, dpl int, ist int) {
g.bits[0] = uint32(cs)<<16 | uint32(rip)&0xFFFF
g.bits[1] = uint32(rip)&0xFFFF0000 | SegmentDescriptorPresent | uint32(dpl)<<13 | 14<<8 | uint32(ist)&0x7
g.bits[2] = uint32(rip >> 32)
}
func (g *Gate64) setTrap(cs Selector, rip uint64, dpl int, ist int) {
g.setInterrupt(cs, rip, dpl, ist)
g.bits[1] |= 1 << 8
}
// TaskState64 is a 64-bit task state structure.
type TaskState64 struct {
_ uint32
rsp0Lo, rsp0Hi uint32
rsp1Lo, rsp1Hi uint32
rsp2Lo, rsp2Hi uint32
_ [2]uint32
ist1Lo, ist1Hi uint32
ist2Lo, ist2Hi uint32
ist3Lo, ist3Hi uint32
ist4Lo, ist4Hi uint32
ist5Lo, ist5Hi uint32
ist6Lo, ist6Hi uint32
ist7Lo, ist7Hi uint32
_ [2]uint32
_ uint16
ioPerm uint16
}
|