1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build amd64
package ring0
import (
"encoding/binary"
"reflect"
"gvisor.dev/gvisor/pkg/usermem"
)
// init initializes architecture-specific state.
func (k *Kernel) init(maxCPUs int) {
entrySize := reflect.TypeOf(kernelEntry{}).Size()
var (
entries []kernelEntry
padding = 1
)
for {
entries = make([]kernelEntry, maxCPUs+padding-1)
totalSize := entrySize * uintptr(maxCPUs+padding-1)
addr := reflect.ValueOf(&entries[0]).Pointer()
if addr&(usermem.PageSize-1) == 0 && totalSize >= usermem.PageSize {
// The runtime forces power-of-2 alignment for allocations, and we are therefore
// safe once the first address is aligned and the chunk is at least a full page.
break
}
padding = padding << 1
}
k.cpuEntries = entries
k.globalIDT = &idt64{}
if reflect.TypeOf(idt64{}).Size() != usermem.PageSize {
panic("Size of globalIDT should be PageSize")
}
if reflect.ValueOf(k.globalIDT).Pointer()&(usermem.PageSize-1) != 0 {
panic("Allocated globalIDT should be page aligned")
}
// Setup the IDT, which is uniform.
for v, handler := range handlers {
// Allow Breakpoint and Overflow to be called from all
// privilege levels.
dpl := 0
if v == Breakpoint || v == Overflow {
dpl = 3
}
// Note that we set all traps to use the interrupt stack, this
// is defined below when setting up the TSS.
k.globalIDT[v].setInterrupt(Kcode, uint64(kernelFunc(handler)), dpl, 1 /* ist */)
}
}
// EntryRegions returns the set of kernel entry regions (must be mapped).
func (k *Kernel) EntryRegions() map[uintptr]uintptr {
regions := make(map[uintptr]uintptr)
addr := reflect.ValueOf(&k.cpuEntries[0]).Pointer()
size := reflect.TypeOf(kernelEntry{}).Size() * uintptr(len(k.cpuEntries))
end, _ := usermem.Addr(addr + size).RoundUp()
regions[uintptr(usermem.Addr(addr).RoundDown())] = uintptr(end)
addr = reflect.ValueOf(k.globalIDT).Pointer()
size = reflect.TypeOf(idt64{}).Size()
end, _ = usermem.Addr(addr + size).RoundUp()
regions[uintptr(usermem.Addr(addr).RoundDown())] = uintptr(end)
return regions
}
// init initializes architecture-specific state.
func (c *CPU) init(cpuID int) {
c.kernelEntry = &c.kernel.cpuEntries[cpuID]
c.cpuSelf = c
// Null segment.
c.gdt[0].setNull()
// Kernel & user segments.
c.gdt[segKcode] = KernelCodeSegment
c.gdt[segKdata] = KernelDataSegment
c.gdt[segUcode32] = UserCodeSegment32
c.gdt[segUdata] = UserDataSegment
c.gdt[segUcode64] = UserCodeSegment64
// The task segment, this spans two entries.
tssBase, tssLimit, _ := c.TSS()
c.gdt[segTss].set(
uint32(tssBase),
uint32(tssLimit),
0, // Privilege level zero.
SegmentDescriptorPresent|
SegmentDescriptorAccess|
SegmentDescriptorWrite|
SegmentDescriptorExecute)
c.gdt[segTssHi].setHi(uint32((tssBase) >> 32))
// Set the kernel stack pointer in the TSS (virtual address).
stackAddr := c.StackTop()
c.stackTop = stackAddr
c.tss.rsp0Lo = uint32(stackAddr)
c.tss.rsp0Hi = uint32(stackAddr >> 32)
c.tss.ist1Lo = uint32(stackAddr)
c.tss.ist1Hi = uint32(stackAddr >> 32)
// Set the I/O bitmap base address beyond the last byte in the TSS
// to block access to the entire I/O address range.
//
// From section 18.5.2 "I/O Permission Bit Map" from Intel SDM vol1:
// I/O addresses not spanned by the map are treated as if they had set
// bits in the map.
c.tss.ioPerm = tssLimit + 1
// Permanently set the kernel segments.
c.registers.Cs = uint64(Kcode)
c.registers.Ds = uint64(Kdata)
c.registers.Es = uint64(Kdata)
c.registers.Ss = uint64(Kdata)
c.registers.Fs = uint64(Kdata)
c.registers.Gs = uint64(Kdata)
// Set mandatory flags.
c.registers.Eflags = KernelFlagsSet
}
// StackTop returns the kernel's stack address.
//
//go:nosplit
func (c *CPU) StackTop() uint64 {
return uint64(kernelAddr(&c.stack[0])) + uint64(len(c.stack))
}
// IDT returns the CPU's IDT base and limit.
//
//go:nosplit
func (c *CPU) IDT() (uint64, uint16) {
return uint64(kernelAddr(&c.kernel.globalIDT[0])), uint16(binary.Size(&c.kernel.globalIDT) - 1)
}
// GDT returns the CPU's GDT base and limit.
//
//go:nosplit
func (c *CPU) GDT() (uint64, uint16) {
return uint64(kernelAddr(&c.gdt[0])), uint16(8*segLast - 1)
}
// TSS returns the CPU's TSS base, limit and value.
//
//go:nosplit
func (c *CPU) TSS() (uint64, uint16, *SegmentDescriptor) {
return uint64(kernelAddr(&c.tss)), uint16(binary.Size(&c.tss) - 1), &c.gdt[segTss]
}
// CR0 returns the CPU's CR0 value.
//
//go:nosplit
func (c *CPU) CR0() uint64 {
return _CR0_PE | _CR0_PG | _CR0_AM | _CR0_ET
}
// CR4 returns the CPU's CR4 value.
//
//go:nosplit
func (c *CPU) CR4() uint64 {
cr4 := uint64(_CR4_PAE | _CR4_PSE | _CR4_OSFXSR | _CR4_OSXMMEXCPT)
if hasPCID {
cr4 |= _CR4_PCIDE
}
if hasXSAVE {
cr4 |= _CR4_OSXSAVE
}
if hasSMEP {
cr4 |= _CR4_SMEP
}
if hasFSGSBASE {
cr4 |= _CR4_FSGSBASE
}
return cr4
}
// EFER returns the CPU's EFER value.
//
//go:nosplit
func (c *CPU) EFER() uint64 {
return _EFER_LME | _EFER_LMA | _EFER_SCE | _EFER_NX
}
// IsCanonical indicates whether addr is canonical per the amd64 spec.
//
//go:nosplit
func IsCanonical(addr uint64) bool {
return addr <= 0x00007fffffffffff || addr > 0xffff800000000000
}
// SwitchToUser performs either a sysret or an iret.
//
// The return value is the vector that interrupted execution.
//
// This function will not split the stack. Callers will probably want to call
// runtime.entersyscall (and pair with a call to runtime.exitsyscall) prior to
// calling this function.
//
// When this is done, this region is quite sensitive to things like system
// calls. After calling entersyscall, any memory used must have been allocated
// and no function calls without go:nosplit are permitted. Any calls made here
// are protected appropriately (e.g. IsCanonical and CR3).
//
// Also note that this function transitively depends on the compiler generating
// code that uses IP-relative addressing inside of absolute addresses. That's
// the case for amd64, but may not be the case for other architectures.
//
// Precondition: the Rip, Rsp, Fs and Gs registers must be canonical.
//
// +checkescape:all
//
//go:nosplit
func (c *CPU) SwitchToUser(switchOpts SwitchOpts) (vector Vector) {
userCR3 := switchOpts.PageTables.CR3(!switchOpts.Flush, switchOpts.UserPCID)
c.kernelCR3 = uintptr(c.kernel.PageTables.CR3(true, switchOpts.KernelPCID))
// Sanitize registers.
regs := switchOpts.Registers
regs.Eflags &= ^uint64(UserFlagsClear)
regs.Eflags |= UserFlagsSet
regs.Cs = uint64(Ucode64) // Required for iret.
regs.Ss = uint64(Udata) // Ditto.
// Perform the switch.
swapgs() // GS will be swapped on return.
WriteFS(uintptr(regs.Fs_base)) // escapes: no. Set application FS.
WriteGS(uintptr(regs.Gs_base)) // escapes: no. Set application GS.
LoadFloatingPoint(switchOpts.FloatingPointState) // escapes: no. Copy in floating point.
if switchOpts.FullRestore {
vector = iret(c, regs, uintptr(userCR3))
} else {
vector = sysret(c, regs, uintptr(userCR3))
}
SaveFloatingPoint(switchOpts.FloatingPointState) // escapes: no. Copy out floating point.
WriteFS(uintptr(c.registers.Fs_base)) // escapes: no. Restore kernel FS.
return
}
// start is the CPU entrypoint.
//
// This is called from the Start asm stub (see entry_amd64.go); on return the
// registers in c.registers will be restored (not segments).
//
//go:nosplit
func start(c *CPU) {
// Save per-cpu & FS segment.
WriteGS(kernelAddr(c.kernelEntry))
WriteFS(uintptr(c.registers.Fs_base))
// Initialize floating point.
//
// Note that on skylake, the valid XCR0 mask reported seems to be 0xff.
// This breaks down as:
//
// bit0 - x87
// bit1 - SSE
// bit2 - AVX
// bit3-4 - MPX
// bit5-7 - AVX512
//
// For some reason, enabled MPX & AVX512 on platforms that report them
// seems to be cause a general protection fault. (Maybe there are some
// virtualization issues and these aren't exported to the guest cpuid.)
// This needs further investigation, but we can limit the floating
// point operations to x87, SSE & AVX for now.
fninit()
xsetbv(0, validXCR0Mask&0x7)
// Set the syscall target.
wrmsr(_MSR_LSTAR, kernelFunc(sysenter))
wrmsr(_MSR_SYSCALL_MASK, KernelFlagsClear|_RFLAGS_DF)
// NOTE: This depends on having the 64-bit segments immediately
// following the 32-bit user segments. This is simply the way the
// sysret instruction is designed to work (it assumes they follow).
wrmsr(_MSR_STAR, uintptr(uint64(Kcode)<<32|uint64(Ucode32)<<48))
wrmsr(_MSR_CSTAR, kernelFunc(sysenter))
}
// SetCPUIDFaulting sets CPUID faulting per the boolean value.
//
// True is returned if faulting could be set.
//
//go:nosplit
func SetCPUIDFaulting(on bool) bool {
// Per the SDM (Vol 3, Table 2-43), PLATFORM_INFO bit 31 denotes support
// for CPUID faulting, and we enable and disable via the MISC_FEATURES MSR.
if rdmsr(_MSR_PLATFORM_INFO)&_PLATFORM_INFO_CPUID_FAULT != 0 {
features := rdmsr(_MSR_MISC_FEATURES)
if on {
features |= _MISC_FEATURE_CPUID_TRAP
} else {
features &^= _MISC_FEATURE_CPUID_TRAP
}
wrmsr(_MSR_MISC_FEATURES, features)
return true // Setting successful.
}
return false
}
// ReadCR2 reads the current CR2 value.
//
//go:nosplit
func ReadCR2() uintptr {
return readCR2()
}
|