1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package refs defines an interface for reference counted objects. It
// also provides a drop-in implementation called AtomicRefCount.
package refs
import (
"bytes"
"fmt"
"reflect"
"runtime"
"sync/atomic"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/log"
"gvisor.dev/gvisor/pkg/sync"
)
// RefCounter is the interface to be implemented by objects that are reference
// counted.
//
// TODO(gvisor.dev/issue/1624): Get rid of most of this package and replace it
// with refsvfs2.
type RefCounter interface {
// IncRef increments the reference counter on the object.
IncRef()
// DecRef decrements the reference counter on the object.
//
// Note that AtomicRefCounter.DecRef() does not support destructors.
// If a type has a destructor, it must implement its own DecRef()
// method and call AtomicRefCounter.DecRefWithDestructor(destructor).
DecRef(ctx context.Context)
// TryIncRef attempts to increase the reference counter on the object,
// but may fail if all references have already been dropped. This
// should be used only in special circumstances, such as WeakRefs.
TryIncRef() bool
// addWeakRef adds the given weak reference. Note that you should have a
// reference to the object when calling this method.
addWeakRef(*WeakRef)
// dropWeakRef drops the given weak reference. Note that you should have
// a reference to the object when calling this method.
dropWeakRef(*WeakRef)
}
// A WeakRefUser is notified when the last non-weak reference is dropped.
type WeakRefUser interface {
// WeakRefGone is called when the last non-weak reference is dropped.
WeakRefGone(ctx context.Context)
}
// WeakRef is a weak reference.
//
// +stateify savable
type WeakRef struct {
weakRefEntry `state:"nosave"`
// obj is an atomic value that points to the refCounter.
obj atomic.Value `state:".(savedReference)"`
// user is notified when the weak ref is zapped by the object getting
// destroyed.
user WeakRefUser
}
// weakRefPool is a pool of weak references to avoid allocations on the hot path.
var weakRefPool = sync.Pool{
New: func() interface{} {
return &WeakRef{}
},
}
// NewWeakRef acquires a weak reference for the given object.
//
// An optional user will be notified when the last non-weak reference is
// dropped.
//
// Note that you must hold a reference to the object prior to getting a weak
// reference. (But you may drop the non-weak reference after that.)
func NewWeakRef(rc RefCounter, u WeakRefUser) *WeakRef {
w := weakRefPool.Get().(*WeakRef)
w.init(rc, u)
return w
}
// get attempts to get a normal reference to the underlying object, and returns
// the object. If this weak reference has already been zapped (the object has
// been destroyed) then false is returned. If the object still exists, then
// true is returned.
func (w *WeakRef) get() (RefCounter, bool) {
rc := w.obj.Load().(RefCounter)
if v := reflect.ValueOf(rc); v == reflect.Zero(v.Type()) {
// This pointer has already been zapped by zap() below. We do
// this to ensure that the GC can collect the underlying
// RefCounter objects and they don't hog resources.
return nil, false
}
if !rc.TryIncRef() {
return nil, true
}
return rc, true
}
// Get attempts to get a normal reference to the underlying object, and returns
// the object. If this fails (the object no longer exists), then nil will be
// returned instead.
func (w *WeakRef) Get() RefCounter {
rc, _ := w.get()
return rc
}
// Drop drops this weak reference. You should always call drop when you are
// finished with the weak reference. You may not use this object after calling
// drop.
func (w *WeakRef) Drop(ctx context.Context) {
rc, ok := w.get()
if !ok {
// We've been zapped already. When the refcounter has called
// zap, we're guaranteed it's not holding references.
weakRefPool.Put(w)
return
}
if rc == nil {
// The object is in the process of being destroyed. We can't
// remove this from the object's list, nor can we return this
// object to the pool. It'll just be garbage collected. This is
// a rare edge case, so it's not a big deal.
return
}
// At this point, we have a reference on the object. So destruction
// of the object (and zapping this weak reference) can't race here.
rc.dropWeakRef(w)
// And now aren't on the object's list of weak references. So it won't
// zap us if this causes the reference count to drop to zero.
rc.DecRef(ctx)
// Return to the pool.
weakRefPool.Put(w)
}
// init initializes this weak reference.
func (w *WeakRef) init(rc RefCounter, u WeakRefUser) {
// Reset the contents of the weak reference.
// This is important because we are reseting the atomic value type.
// Otherwise, we could panic here if obj is different than what it was
// the last time this was used.
*w = WeakRef{}
w.user = u
w.obj.Store(rc)
// In the load path, we may already have a nil value. So we need to
// check whether or not that is the case before calling addWeakRef.
if v := reflect.ValueOf(rc); v != reflect.Zero(v.Type()) {
rc.addWeakRef(w)
}
}
// zap zaps this weak reference.
func (w *WeakRef) zap() {
// We need to be careful about types here.
// So reflect is involved. But it's not that bad.
rc := w.obj.Load()
typ := reflect.TypeOf(rc)
w.obj.Store(reflect.Zero(typ).Interface())
}
// AtomicRefCount keeps a reference count using atomic operations and calls the
// destructor when the count reaches zero.
//
// Do not use AtomicRefCount for new ref-counted objects! It is deprecated in
// favor of the refsvfs2 package.
//
// N.B. To allow the zero-object to be initialized, the count is offset by
// 1, that is, when refCount is n, there are really n+1 references.
//
// +stateify savable
type AtomicRefCount struct {
// refCount is composed of two fields:
//
// [32-bit speculative references]:[32-bit real references]
//
// Speculative references are used for TryIncRef, to avoid a
// CompareAndSwap loop. See IncRef, DecRef and TryIncRef for details of
// how these fields are used.
refCount int64
// name is the name of the type which owns this ref count.
//
// name is immutable after EnableLeakCheck is called.
name string
// stack optionally records the caller of EnableLeakCheck.
//
// stack is immutable after EnableLeakCheck is called.
stack []uintptr
// mu protects the list below.
mu sync.Mutex `state:"nosave"`
// weakRefs is our collection of weak references.
weakRefs weakRefList `state:"nosave"`
}
// LeakMode configures the leak checker.
type LeakMode uint32
// TODO(gvisor.dev/issue/1624): Simplify down to two modes (on/off) once vfs1
// ref counting is gone.
const (
// UninitializedLeakChecking indicates that the leak checker has not yet been initialized.
UninitializedLeakChecking LeakMode = iota
// NoLeakChecking indicates that no effort should be made to check for
// leaks.
NoLeakChecking
// LeaksLogWarning indicates that a warning should be logged when leaks
// are found.
LeaksLogWarning
// LeaksLogTraces indicates that a trace collected during allocation
// should be logged when leaks are found.
LeaksLogTraces
)
// Set implements flag.Value.
func (l *LeakMode) Set(v string) error {
switch v {
case "disabled":
*l = NoLeakChecking
case "log-names":
*l = LeaksLogWarning
case "log-traces":
*l = LeaksLogTraces
default:
return fmt.Errorf("invalid ref leak mode %q", v)
}
return nil
}
// Get implements flag.Value.
func (l *LeakMode) Get() interface{} {
return *l
}
// String implements flag.Value.
func (l LeakMode) String() string {
switch l {
case UninitializedLeakChecking:
return "uninitialized"
case NoLeakChecking:
return "disabled"
case LeaksLogWarning:
return "log-names"
case LeaksLogTraces:
return "log-traces"
}
panic(fmt.Sprintf("invalid ref leak mode %d", l))
}
// leakMode stores the current mode for the reference leak checker.
//
// Values must be one of the LeakMode values.
//
// leakMode must be accessed atomically.
var leakMode uint32
// SetLeakMode configures the reference leak checker.
func SetLeakMode(mode LeakMode) {
atomic.StoreUint32(&leakMode, uint32(mode))
}
// GetLeakMode returns the current leak mode.
func GetLeakMode() LeakMode {
return LeakMode(atomic.LoadUint32(&leakMode))
}
const maxStackFrames = 40
type fileLine struct {
file string
line int
}
// A stackKey is a representation of a stack frame for use as a map key.
//
// The fileLine type is used as PC values seem to vary across collections, even
// for the same call stack.
type stackKey [maxStackFrames]fileLine
var stackCache = struct {
sync.Mutex
entries map[stackKey][]uintptr
}{entries: map[stackKey][]uintptr{}}
func makeStackKey(pcs []uintptr) stackKey {
frames := runtime.CallersFrames(pcs)
var key stackKey
keySlice := key[:0]
for {
frame, more := frames.Next()
keySlice = append(keySlice, fileLine{frame.File, frame.Line})
if !more || len(keySlice) == len(key) {
break
}
}
return key
}
// RecordStack constructs and returns the PCs on the current stack.
func RecordStack() []uintptr {
pcs := make([]uintptr, maxStackFrames)
n := runtime.Callers(1, pcs)
if n == 0 {
// No pcs available. Stop now.
//
// This can happen if the first argument to runtime.Callers
// is large.
return nil
}
pcs = pcs[:n]
key := makeStackKey(pcs)
stackCache.Lock()
v, ok := stackCache.entries[key]
if !ok {
// Reallocate to prevent pcs from escaping.
v = append([]uintptr(nil), pcs...)
stackCache.entries[key] = v
}
stackCache.Unlock()
return v
}
// FormatStack converts the given stack into a readable format.
func FormatStack(pcs []uintptr) string {
frames := runtime.CallersFrames(pcs)
var trace bytes.Buffer
for {
frame, more := frames.Next()
fmt.Fprintf(&trace, "%s:%d: %s\n", frame.File, frame.Line, frame.Function)
if !more {
break
}
}
return trace.String()
}
func (r *AtomicRefCount) finalize() {
var note string
switch LeakMode(atomic.LoadUint32(&leakMode)) {
case NoLeakChecking:
return
case UninitializedLeakChecking:
note = "(Leak checker uninitialized): "
}
if n := r.ReadRefs(); n != 0 {
msg := fmt.Sprintf("%sAtomicRefCount %p owned by %q garbage collected with ref count of %d (want 0)", note, r, r.name, n)
if len(r.stack) != 0 {
msg += ":\nCaller:\n" + FormatStack(r.stack)
} else {
msg += " (enable trace logging to debug)"
}
log.Warningf(msg)
}
}
// EnableLeakCheck checks for reference leaks when the AtomicRefCount gets
// garbage collected.
//
// This function adds a finalizer to the AtomicRefCount, so the AtomicRefCount
// must be at the beginning of its parent.
//
// name is a friendly name that will be listed as the owner of the
// AtomicRefCount in logs. It should be the name of the parent type, including
// package.
func (r *AtomicRefCount) EnableLeakCheck(name string) {
if name == "" {
panic("invalid name")
}
switch LeakMode(atomic.LoadUint32(&leakMode)) {
case NoLeakChecking:
return
case LeaksLogTraces:
r.stack = RecordStack()
}
r.name = name
runtime.SetFinalizer(r, (*AtomicRefCount).finalize)
}
// ReadRefs returns the current number of references. The returned count is
// inherently racy and is unsafe to use without external synchronization.
func (r *AtomicRefCount) ReadRefs() int64 {
// Account for the internal -1 offset on refcounts.
return atomic.LoadInt64(&r.refCount) + 1
}
// IncRef increments this object's reference count. While the count is kept
// greater than zero, the destructor doesn't get called.
//
// The sanity check here is limited to real references, since if they have
// dropped beneath zero then the object should have been destroyed.
//
//go:nosplit
func (r *AtomicRefCount) IncRef() {
if v := atomic.AddInt64(&r.refCount, 1); v <= 0 {
panic("Incrementing non-positive ref count")
}
}
// TryIncRef attempts to increment the reference count, *unless the count has
// already reached zero*. If false is returned, then the object has already
// been destroyed, and the weak reference is no longer valid. If true if
// returned then a valid reference is now held on the object.
//
// To do this safely without a loop, a speculative reference is first acquired
// on the object. This allows multiple concurrent TryIncRef calls to
// distinguish other TryIncRef calls from genuine references held.
//
//go:nosplit
func (r *AtomicRefCount) TryIncRef() bool {
const speculativeRef = 1 << 32
v := atomic.AddInt64(&r.refCount, speculativeRef)
if int32(v) < 0 {
// This object has already been freed.
atomic.AddInt64(&r.refCount, -speculativeRef)
return false
}
// Turn into a real reference.
atomic.AddInt64(&r.refCount, -speculativeRef+1)
return true
}
// addWeakRef adds the given weak reference.
func (r *AtomicRefCount) addWeakRef(w *WeakRef) {
r.mu.Lock()
r.weakRefs.PushBack(w)
r.mu.Unlock()
}
// dropWeakRef drops the given weak reference.
func (r *AtomicRefCount) dropWeakRef(w *WeakRef) {
r.mu.Lock()
r.weakRefs.Remove(w)
r.mu.Unlock()
}
// DecRefWithDestructor decrements the object's reference count. If the
// resulting count is negative and the destructor is not nil, then the
// destructor will be called.
//
// Note that speculative references are counted here. Since they were added
// prior to real references reaching zero, they will successfully convert to
// real references. In other words, we see speculative references only in the
// following case:
//
// A: TryIncRef [speculative increase => sees non-negative references]
// B: DecRef [real decrease]
// A: TryIncRef [transform speculative to real]
//
//go:nosplit
func (r *AtomicRefCount) DecRefWithDestructor(ctx context.Context, destroy func(context.Context)) {
switch v := atomic.AddInt64(&r.refCount, -1); {
case v < -1:
panic("Decrementing non-positive ref count")
case v == -1:
// Zap weak references. Note that at this point, all weak
// references are already invalid. That is, TryIncRef() will
// return false due to the reference count check.
r.mu.Lock()
for !r.weakRefs.Empty() {
w := r.weakRefs.Front()
// Capture the callback because w cannot be touched
// after it's zapped -- the owner is free it reuse it
// after that.
user := w.user
r.weakRefs.Remove(w)
w.zap()
if user != nil {
r.mu.Unlock()
user.WeakRefGone(ctx)
r.mu.Lock()
}
}
r.mu.Unlock()
// Call the destructor.
if destroy != nil {
destroy(ctx)
}
}
}
// DecRef decrements this object's reference count.
//
//go:nosplit
func (r *AtomicRefCount) DecRef(ctx context.Context) {
r.DecRefWithDestructor(ctx, nil)
}
// OnExit is called on sandbox exit. It runs GC to enqueue refcount finalizers,
// which check for reference leaks. There is no way to guarantee that every
// finalizer will run before exiting, but this at least ensures that they will
// be discovered/enqueued by GC.
func OnExit() {
if LeakMode(atomic.LoadUint32(&leakMode)) != NoLeakChecking {
runtime.GC()
}
}
|