1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
|
// Copyright 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package p9
import (
"errors"
"fmt"
"io"
"io/ioutil"
"sync"
"syscall"
"gvisor.googlesource.com/gvisor/pkg/fd"
"gvisor.googlesource.com/gvisor/pkg/log"
"gvisor.googlesource.com/gvisor/pkg/unet"
)
// ErrSocket is returned in cases of a socket issue.
//
// This may be treated differently than other errors.
type ErrSocket struct {
// error is the socket error.
error
}
// ErrMessageTooLarge indicates the size was larger than reasonable.
type ErrMessageTooLarge struct {
size uint32
msize uint32
}
// Error returns a sensible error.
func (e *ErrMessageTooLarge) Error() string {
return fmt.Sprintf("message too large for fixed buffer: size is %d, limit is %d", e.size, e.msize)
}
// ErrNoValidMessage indicates no valid message could be decoded.
var ErrNoValidMessage = errors.New("buffer contained no valid message")
const (
// headerLength is the number of bytes required for a header.
headerLength uint32 = 7
// maximumLength is the largest possible message.
maximumLength uint32 = 4 * 1024 * 1024
// initialBufferLength is the initial data buffer we allocate.
initialBufferLength uint32 = 64
)
var dataPool = sync.Pool{
New: func() interface{} {
// These buffers are used for decoding without a payload.
return make([]byte, initialBufferLength)
},
}
// send sends the given message over the socket.
func send(s *unet.Socket, tag Tag, m message) error {
data := dataPool.Get().([]byte)
dataBuf := buffer{data: data[:0]}
if log.IsLogging(log.Debug) {
log.Debugf("send [FD %d] [Tag %06d] %s", s.FD(), tag, m.String())
}
// Encode the message. The buffer will grow automatically.
m.Encode(&dataBuf)
// Get our vectors to send.
var hdr [headerLength]byte
vecs := make([][]byte, 0, 3)
vecs = append(vecs, hdr[:])
if len(dataBuf.data) > 0 {
vecs = append(vecs, dataBuf.data)
}
totalLength := headerLength + uint32(len(dataBuf.data))
// Is there a payload?
if payloader, ok := m.(payloader); ok {
p := payloader.Payload()
if len(p) > 0 {
vecs = append(vecs, p)
totalLength += uint32(len(p))
}
}
// Construct the header.
headerBuf := buffer{data: hdr[:0]}
headerBuf.Write32(totalLength)
headerBuf.WriteMsgType(m.Type())
headerBuf.WriteTag(tag)
// Pack any files if necessary.
w := s.Writer(true)
if filer, ok := m.(filer); ok {
if f := filer.FilePayload(); f != nil {
defer f.Close()
// Pack the file into the message.
w.PackFDs(f.FD())
}
}
for n := 0; n < int(totalLength); {
cur, err := w.WriteVec(vecs)
if err != nil {
return ErrSocket{err}
}
n += cur
// Consume iovecs.
for consumed := 0; consumed < cur; {
if len(vecs[0]) <= cur-consumed {
consumed += len(vecs[0])
vecs = vecs[1:]
} else {
vecs[0] = vecs[0][cur-consumed:]
break
}
}
if n > 0 && n < int(totalLength) {
// Don't resend any control message.
w.UnpackFDs()
}
}
// All set.
dataPool.Put(dataBuf.data)
return nil
}
// lookupTagAndType looks up an existing message or creates a new one.
//
// This is called by recv after decoding the header. Any error returned will be
// propagating back to the caller. You may use messageByType directly as a
// lookupTagAndType function (by design).
type lookupTagAndType func(tag Tag, t MsgType) (message, error)
// recv decodes a message from the socket.
//
// This is done in two parts, and is thus not safe for multiple callers.
//
// On a socket error, the special error type ErrSocket is returned.
//
// The tag value NoTag will always be returned if err is non-nil.
func recv(s *unet.Socket, msize uint32, lookup lookupTagAndType) (Tag, message, error) {
// Read a header.
//
// Since the send above is atomic, we must always receive control
// messages along with the header. This means we need to be careful
// about closing FDs during errors to prevent leaks.
var hdr [headerLength]byte
r := s.Reader(true)
r.EnableFDs(1)
n, err := r.ReadVec([][]byte{hdr[:]})
if err != nil && (n == 0 || err != io.EOF) {
r.CloseFDs()
return NoTag, nil, ErrSocket{err}
}
fds, err := r.ExtractFDs()
if err != nil {
return NoTag, nil, ErrSocket{err}
}
defer func() {
// Close anything left open. The case where
// fds are caught and used is handled below,
// and the fds variable will be set to nil.
for _, fd := range fds {
syscall.Close(fd)
}
}()
r.EnableFDs(0)
// Continuing reading for a short header.
for n < int(headerLength) {
cur, err := r.ReadVec([][]byte{hdr[n:]})
if err != nil && (cur == 0 || err != io.EOF) {
return NoTag, nil, ErrSocket{err}
}
n += cur
}
// Decode the header.
headerBuf := buffer{data: hdr[:]}
size := headerBuf.Read32()
t := headerBuf.ReadMsgType()
tag := headerBuf.ReadTag()
if size < headerLength {
// The message is too small.
//
// See above: it's probably screwed.
return NoTag, nil, ErrSocket{ErrNoValidMessage}
}
if size > maximumLength || size > msize {
// The message is too big.
return NoTag, nil, ErrSocket{&ErrMessageTooLarge{size, msize}}
}
remaining := size - headerLength
// Find our message to decode.
m, err := lookup(tag, t)
if err != nil {
// Throw away the contents of this message.
if remaining > 0 {
io.Copy(ioutil.Discard, &io.LimitedReader{R: s, N: int64(remaining)})
}
return tag, nil, err
}
// Not yet initialized.
var dataBuf buffer
// Read the rest of the payload.
//
// This requires some special care to ensure that the vectors all line
// up the way they should. We do this to minimize copying data around.
var vecs [][]byte
if payloader, ok := m.(payloader); ok {
fixedSize := payloader.FixedSize()
// Do we need more than there is?
if fixedSize > remaining {
// This is not a valid message.
if remaining > 0 {
io.Copy(ioutil.Discard, &io.LimitedReader{R: s, N: int64(remaining)})
}
return NoTag, nil, ErrNoValidMessage
}
if fixedSize != 0 {
// Pull a data buffer from the pool.
data := dataPool.Get().([]byte)
if int(fixedSize) > len(data) {
// Create a larger data buffer, ensuring
// sufficient capicity for the message.
data = make([]byte, fixedSize)
defer dataPool.Put(data)
dataBuf = buffer{data: data}
vecs = append(vecs, data)
} else {
// Limit the data buffer, and make sure it
// gets filled before the payload buffer.
defer dataPool.Put(data)
dataBuf = buffer{data: data[:fixedSize]}
vecs = append(vecs, data[:fixedSize])
}
}
// Include the payload.
p := payloader.Payload()
if p == nil || len(p) != int(remaining-fixedSize) {
p = make([]byte, remaining-fixedSize)
payloader.SetPayload(p)
}
if len(p) > 0 {
vecs = append(vecs, p)
}
} else if remaining != 0 {
// Pull a data buffer from the pool.
data := dataPool.Get().([]byte)
if int(remaining) > len(data) {
// Create a larger data buffer.
data = make([]byte, remaining)
defer dataPool.Put(data)
dataBuf = buffer{data: data}
vecs = append(vecs, data)
} else {
// Limit the data buffer.
defer dataPool.Put(data)
dataBuf = buffer{data: data[:remaining]}
vecs = append(vecs, data[:remaining])
}
}
if len(vecs) > 0 {
// Read the rest of the message.
//
// No need to handle a control message.
r := s.Reader(true)
for n := 0; n < int(remaining); {
cur, err := r.ReadVec(vecs)
if err != nil && (cur == 0 || err != io.EOF) {
return NoTag, nil, ErrSocket{err}
}
n += cur
// Consume iovecs.
for consumed := 0; consumed < cur; {
if len(vecs[0]) <= cur-consumed {
consumed += len(vecs[0])
vecs = vecs[1:]
} else {
vecs[0] = vecs[0][cur-consumed:]
break
}
}
}
}
// Decode the message data.
m.Decode(&dataBuf)
if dataBuf.isOverrun() {
// No need to drain the socket.
return NoTag, nil, ErrNoValidMessage
}
// Save the file, if any came out.
if filer, ok := m.(filer); ok && len(fds) > 0 {
// Set the file object.
filer.SetFilePayload(fd.New(fds[0]))
// Close the rest. We support only one.
for i := 1; i < len(fds); i++ {
syscall.Close(fds[i])
}
// Don't close in the defer.
fds = nil
}
if log.IsLogging(log.Debug) {
log.Debugf("recv [FD %d] [Tag %06d] %s", s.FD(), tag, m.String())
}
// All set.
return tag, m, nil
}
|