1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package p9
import (
"io"
"runtime/debug"
"sync"
"sync/atomic"
"syscall"
"gvisor.dev/gvisor/pkg/fd"
"gvisor.dev/gvisor/pkg/fdchannel"
"gvisor.dev/gvisor/pkg/flipcall"
"gvisor.dev/gvisor/pkg/log"
"gvisor.dev/gvisor/pkg/unet"
)
// Server is a 9p2000.L server.
type Server struct {
// attacher provides the attach function.
attacher Attacher
// pathTree is the full set of paths opened on this server.
//
// These may be across different connections, but rename operations
// must be serialized globally for safely. There is a single pathTree
// for the entire server, and not per connection.
pathTree *pathNode
// renameMu is a global lock protecting rename operations. With this
// lock, we can be certain that any given rename operation can safely
// acquire two path nodes in any order, as all other concurrent
// operations acquire at most a single node.
renameMu sync.RWMutex
}
// NewServer returns a new server.
func NewServer(attacher Attacher) *Server {
return &Server{
attacher: attacher,
pathTree: newPathNode(),
}
}
// connState is the state for a single connection.
type connState struct {
// server is the backing server.
server *Server
// sendMu is the send lock.
sendMu sync.Mutex
// conn is the connection.
conn *unet.Socket
// fids is the set of active FIDs.
//
// This is used to find FIDs for files.
fidMu sync.Mutex
fids map[FID]*fidRef
// tags is the set of active tags.
//
// The given channel is closed when the
// tag is finished with processing.
tagMu sync.Mutex
tags map[Tag]chan struct{}
// messageSize is the maximum message size. The server does not
// do automatic splitting of messages.
messageSize uint32
// version is the agreed upon version X of 9P2000.L.Google.X.
// version 0 implies 9P2000.L.
version uint32
// -- below relates to the legacy handler --
// recvOkay indicates that a receive may start.
recvOkay chan bool
// recvDone is signalled when a message is received.
recvDone chan error
// sendDone is signalled when a send is finished.
sendDone chan error
// -- below relates to the flipcall handler --
// channelMu protects below.
channelMu sync.Mutex
// channelWg represents active workers.
channelWg sync.WaitGroup
// channelAlloc allocates channel memory.
channelAlloc *flipcall.PacketWindowAllocator
// channels are the set of initialized channels.
channels []*channel
}
// fidRef wraps a node and tracks references.
type fidRef struct {
// server is the associated server.
server *Server
// file is the associated File.
file File
// refs is an active refence count.
//
// The node above will be closed only when refs reaches zero.
refs int64
// openedMu protects opened and openFlags.
openedMu sync.Mutex
// opened indicates whether this has been opened already.
//
// This is updated in handlers.go.
opened bool
// mode is the fidRef's mode from the walk. Only the type bits are
// valid, the permissions may change. This is used to sanity check
// operations on this element, and prevent walks across
// non-directories.
mode FileMode
// openFlags is the mode used in the open.
//
// This is updated in handlers.go.
openFlags OpenFlags
// pathNode is the current pathNode for this FID.
pathNode *pathNode
// parent is the parent fidRef. We hold on to a parent reference to
// ensure that hooks, such as Renamed, can be executed safely by the
// server code.
//
// Note that parent cannot be changed without holding both the global
// rename lock and a writable lock on the associated pathNode for this
// fidRef. Holding either of these locks is sufficient to examine
// parent safely.
//
// The parent will be nil for root fidRefs, and non-nil otherwise. The
// method maybeParent can be used to return a cyclical reference, and
// isRoot should be used to check for root over looking at parent
// directly.
parent *fidRef
// deleted indicates that the backing file has been deleted. We stop
// many operations at the API level if they are incompatible with a
// file that has already been unlinked.
deleted uint32
}
// OpenFlags returns the flags the file was opened with and true iff the fid was opened previously.
func (f *fidRef) OpenFlags() (OpenFlags, bool) {
f.openedMu.Lock()
defer f.openedMu.Unlock()
return f.openFlags, f.opened
}
// IncRef increases the references on a fid.
func (f *fidRef) IncRef() {
atomic.AddInt64(&f.refs, 1)
}
// DecRef should be called when you're finished with a fid.
func (f *fidRef) DecRef() {
if atomic.AddInt64(&f.refs, -1) == 0 {
f.file.Close()
// Drop the parent reference.
//
// Since this fidRef is guaranteed to be non-discoverable when
// the references reach zero, we don't need to worry about
// clearing the parent.
if f.parent != nil {
// If we've been previously deleted, this removing this
// ref is a no-op. That's expected.
f.parent.pathNode.removeChild(f)
f.parent.DecRef()
}
}
}
// isDeleted returns true if this fidRef has been deleted.
func (f *fidRef) isDeleted() bool {
return atomic.LoadUint32(&f.deleted) != 0
}
// isRoot indicates whether this is a root fid.
func (f *fidRef) isRoot() bool {
return f.parent == nil
}
// maybeParent returns a cyclic reference for roots, and the parent otherwise.
func (f *fidRef) maybeParent() *fidRef {
if f.parent != nil {
return f.parent
}
return f // Root has itself.
}
// notifyDelete marks all fidRefs as deleted.
//
// Precondition: this must be called via safelyWrite or safelyGlobal.
func notifyDelete(pn *pathNode) {
// Call on all local references.
pn.forEachChildRef(func(ref *fidRef, _ string) {
atomic.StoreUint32(&ref.deleted, 1)
})
// Call on all subtrees.
pn.forEachChildNode(func(pn *pathNode) {
notifyDelete(pn)
})
}
// markChildDeleted marks all children below the given name as deleted.
//
// Precondition: this must be called via safelyWrite or safelyGlobal.
func (f *fidRef) markChildDeleted(name string) {
origPathNode := f.pathNode.removeWithName(name, func(ref *fidRef) {
atomic.StoreUint32(&ref.deleted, 1)
})
if origPathNode != nil {
// Mark all children as deleted.
notifyDelete(origPathNode)
}
}
// notifyNameChange calls the relevant Renamed method on all nodes in the path,
// recursively. Note that this applies only for subtrees, as these
// notifications do not apply to the actual file whose name has changed.
//
// Precondition: this must be called via safelyGlobal.
func notifyNameChange(pn *pathNode) {
// Call on all local references.
pn.forEachChildRef(func(ref *fidRef, name string) {
ref.file.Renamed(ref.parent.file, name)
})
// Call on all subtrees.
pn.forEachChildNode(func(pn *pathNode) {
notifyNameChange(pn)
})
}
// renameChildTo renames the given child to the target.
//
// Precondition: this must be called via safelyGlobal.
func (f *fidRef) renameChildTo(oldName string, target *fidRef, newName string) {
target.markChildDeleted(newName)
origPathNode := f.pathNode.removeWithName(oldName, func(ref *fidRef) {
// N.B. DecRef can take f.pathNode's parent's childMu. This is
// allowed because renameMu is held for write via safelyGlobal.
ref.parent.DecRef() // Drop original reference.
ref.parent = target // Change parent.
ref.parent.IncRef() // Acquire new one.
if f.pathNode == target.pathNode {
target.pathNode.addChildLocked(ref, newName)
} else {
target.pathNode.addChild(ref, newName)
}
ref.file.Renamed(target.file, newName)
})
if origPathNode != nil {
// Replace the previous (now deleted) path node.
target.pathNode.addPathNodeFor(newName, origPathNode)
// Call Renamed on all children.
notifyNameChange(origPathNode)
}
}
// safelyRead executes the given operation with the local path node locked.
// This implies that paths will not change during the operation.
func (f *fidRef) safelyRead(fn func() error) (err error) {
f.server.renameMu.RLock()
defer f.server.renameMu.RUnlock()
f.pathNode.opMu.RLock()
defer f.pathNode.opMu.RUnlock()
return fn()
}
// safelyWrite executes the given operation with the local path node locked in
// a writable fashion. This implies some paths may change.
func (f *fidRef) safelyWrite(fn func() error) (err error) {
f.server.renameMu.RLock()
defer f.server.renameMu.RUnlock()
f.pathNode.opMu.Lock()
defer f.pathNode.opMu.Unlock()
return fn()
}
// safelyGlobal executes the given operation with the global path lock held.
func (f *fidRef) safelyGlobal(fn func() error) (err error) {
f.server.renameMu.Lock()
defer f.server.renameMu.Unlock()
return fn()
}
// LookupFID finds the given FID.
//
// You should call fid.DecRef when you are finished using the fid.
func (cs *connState) LookupFID(fid FID) (*fidRef, bool) {
cs.fidMu.Lock()
defer cs.fidMu.Unlock()
fidRef, ok := cs.fids[fid]
if ok {
fidRef.IncRef()
return fidRef, true
}
return nil, false
}
// InsertFID installs the given FID.
//
// This fid starts with a reference count of one. If a FID exists in
// the slot already it is closed, per the specification.
func (cs *connState) InsertFID(fid FID, newRef *fidRef) {
cs.fidMu.Lock()
defer cs.fidMu.Unlock()
origRef, ok := cs.fids[fid]
if ok {
defer origRef.DecRef()
}
newRef.IncRef()
cs.fids[fid] = newRef
}
// DeleteFID removes the given FID.
//
// This simply removes it from the map and drops a reference.
func (cs *connState) DeleteFID(fid FID) bool {
cs.fidMu.Lock()
defer cs.fidMu.Unlock()
fidRef, ok := cs.fids[fid]
if !ok {
return false
}
delete(cs.fids, fid)
fidRef.DecRef()
return true
}
// StartTag starts handling the tag.
//
// False is returned if this tag is already active.
func (cs *connState) StartTag(t Tag) bool {
cs.tagMu.Lock()
defer cs.tagMu.Unlock()
_, ok := cs.tags[t]
if ok {
return false
}
cs.tags[t] = make(chan struct{})
return true
}
// ClearTag finishes handling a tag.
func (cs *connState) ClearTag(t Tag) {
cs.tagMu.Lock()
defer cs.tagMu.Unlock()
ch, ok := cs.tags[t]
if !ok {
// Should never happen.
panic("unused tag cleared")
}
delete(cs.tags, t)
// Notify.
close(ch)
}
// WaitTag waits for a tag to finish.
func (cs *connState) WaitTag(t Tag) {
cs.tagMu.Lock()
ch, ok := cs.tags[t]
cs.tagMu.Unlock()
if !ok {
return
}
// Wait for close.
<-ch
}
// initializeChannels initializes all channels.
//
// This is a no-op if channels are already initialized.
func (cs *connState) initializeChannels() (err error) {
cs.channelMu.Lock()
defer cs.channelMu.Unlock()
// Initialize our channel allocator.
if cs.channelAlloc == nil {
alloc, err := flipcall.NewPacketWindowAllocator()
if err != nil {
return err
}
cs.channelAlloc = alloc
}
// Create all the channels.
for len(cs.channels) < channelsPerClient {
res := &channel{
done: make(chan struct{}),
}
res.desc, err = cs.channelAlloc.Allocate(channelSize)
if err != nil {
return err
}
if err := res.data.Init(flipcall.ServerSide, res.desc); err != nil {
return err
}
socks, err := fdchannel.NewConnectedSockets()
if err != nil {
res.data.Destroy() // Cleanup.
return err
}
res.fds.Init(socks[0])
res.client = fd.New(socks[1])
cs.channels = append(cs.channels, res)
// Start servicing the channel.
//
// When we call stop, we will close all the channels and these
// routines should finish. We need the wait group to ensure
// that active handlers are actually finished before cleanup.
cs.channelWg.Add(1)
go func() { // S/R-SAFE: Server side.
defer cs.channelWg.Done()
if err := res.service(cs); err != nil {
log.Warningf("p9.channel.service: %v", err)
}
}()
}
return nil
}
// lookupChannel looks up the channel with given id.
//
// The function returns nil if no such channel is available.
func (cs *connState) lookupChannel(id uint32) *channel {
cs.channelMu.Lock()
defer cs.channelMu.Unlock()
if id >= uint32(len(cs.channels)) {
return nil
}
return cs.channels[id]
}
// handle handles a single message.
func (cs *connState) handle(m message) (r message) {
defer func() {
if r == nil {
// Don't allow a panic to propagate.
recover()
// Include a useful log message.
log.Warningf("panic in handler: %s", debug.Stack())
// Wrap in an EFAULT error; we don't really have a
// better way to describe this kind of error. It will
// usually manifest as a result of the test framework.
r = newErr(syscall.EFAULT)
}
}()
if handler, ok := m.(handler); ok {
// Call the message handler.
r = handler.handle(cs)
} else {
// Produce an ENOSYS error.
r = newErr(syscall.ENOSYS)
}
return
}
// handleRequest handles a single request.
//
// The recvDone channel is signaled when recv is done (with a error if
// necessary). The sendDone channel is signaled with the result of the send.
func (cs *connState) handleRequest() {
messageSize := atomic.LoadUint32(&cs.messageSize)
if messageSize == 0 {
// Default or not yet negotiated.
messageSize = maximumLength
}
// Receive a message.
tag, m, err := recv(cs.conn, messageSize, msgRegistry.get)
if errSocket, ok := err.(ErrSocket); ok {
// Connection problem; stop serving.
cs.recvDone <- errSocket.error
return
}
// Signal receive is done.
cs.recvDone <- nil
// Deal with other errors.
if err != nil && err != io.EOF {
// If it's not a connection error, but some other protocol error,
// we can send a response immediately.
cs.sendMu.Lock()
err := send(cs.conn, tag, newErr(err))
cs.sendMu.Unlock()
cs.sendDone <- err
return
}
// Try to start the tag.
if !cs.StartTag(tag) {
// Nothing we can do at this point; client is bogus.
log.Debugf("no valid tag [%05d]", tag)
cs.sendDone <- ErrNoValidMessage
return
}
// Handle the message.
r := cs.handle(m)
// Clear the tag before sending. That's because as soon as this hits
// the wire, the client can legally send the same tag.
cs.ClearTag(tag)
// Send back the result.
cs.sendMu.Lock()
err = send(cs.conn, tag, r)
cs.sendMu.Unlock()
cs.sendDone <- err
// Return the message to the cache.
msgRegistry.put(m)
}
func (cs *connState) handleRequests() {
for range cs.recvOkay {
cs.handleRequest()
}
}
func (cs *connState) stop() {
// Close all channels.
close(cs.recvOkay)
close(cs.recvDone)
close(cs.sendDone)
// Free the channels.
cs.channelMu.Lock()
for _, ch := range cs.channels {
ch.Shutdown()
}
cs.channelWg.Wait()
for _, ch := range cs.channels {
ch.Close()
}
cs.channels = nil // Clear.
cs.channelMu.Unlock()
// Free the channel memory.
if cs.channelAlloc != nil {
cs.channelAlloc.Destroy()
}
// Close all remaining fids.
for fid, fidRef := range cs.fids {
delete(cs.fids, fid)
// Drop final reference in the FID table. Note this should
// always close the file, since we've ensured that there are no
// handlers running via the wait for Pending => 0 below.
fidRef.DecRef()
}
// Ensure the connection is closed.
cs.conn.Close()
}
// service services requests concurrently.
func (cs *connState) service() error {
// Pending is the number of handlers that have finished receiving but
// not finished processing requests. These must be waiting on properly
// below. See the next comment for an explanation of the loop.
pending := 0
// Start the first request handler.
go cs.handleRequests() // S/R-SAFE: Irrelevant.
cs.recvOkay <- true
// We loop and make sure there's always one goroutine waiting for a new
// request. We process all the data for a single request in one
// goroutine however, to ensure the best turnaround time possible.
for {
select {
case err := <-cs.recvDone:
if err != nil {
// Wait for pending handlers.
for i := 0; i < pending; i++ {
<-cs.sendDone
}
return nil
}
// This handler is now pending.
pending++
// Kick the next receiver, or start a new handler
// if no receiver is currently waiting.
select {
case cs.recvOkay <- true:
default:
go cs.handleRequests() // S/R-SAFE: Irrelevant.
cs.recvOkay <- true
}
case <-cs.sendDone:
// This handler is finished.
pending--
// Error sending a response? Nothing can be done.
//
// We don't terminate on a send error though, since
// we still have a pending receive. The error would
// have been logged above, we just ignore it here.
}
}
}
// Handle handles a single connection.
func (s *Server) Handle(conn *unet.Socket) error {
cs := &connState{
server: s,
conn: conn,
fids: make(map[FID]*fidRef),
tags: make(map[Tag]chan struct{}),
recvOkay: make(chan bool),
recvDone: make(chan error, 10),
sendDone: make(chan error, 10),
}
defer cs.stop()
return cs.service()
}
// Serve handles requests from the bound socket.
//
// The passed serverSocket _must_ be created in packet mode.
func (s *Server) Serve(serverSocket *unet.ServerSocket) error {
var wg sync.WaitGroup
defer wg.Wait()
for {
conn, err := serverSocket.Accept()
if err != nil {
// Something went wrong.
//
// Socket closed?
return err
}
wg.Add(1)
go func(conn *unet.Socket) { // S/R-SAFE: Irrelevant.
s.Handle(conn)
wg.Done()
}(conn)
}
}
|