1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
|
// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package merkletree implements Merkle tree generating and verification.
package merkletree
import (
"bytes"
"crypto/sha256"
"fmt"
"io"
"gvisor.dev/gvisor/pkg/usermem"
)
const (
// sha256DigestSize specifies the digest size of a SHA256 hash.
sha256DigestSize = 32
)
// DigestSize returns the size (in bytes) of a digest.
// TODO(b/156980949): Allow config other hash methods (SHA384/SHA512).
func DigestSize() int {
return sha256DigestSize
}
// Layout defines the scale of a Merkle tree.
type Layout struct {
// blockSize is the size of a data block to be hashed.
blockSize int64
// digestSize is the size of a generated hash.
digestSize int64
// levelOffset contains the offset of the begnning of each level in
// bytes. The number of levels in the tree is the length of the slice.
// The leaf nodes (level 0) contain hashes of blocks of the input data.
// Each level N contains hashes of the blocks in level N-1. The highest
// level is the root hash.
levelOffset []int64
}
// InitLayout initializes and returns a new Layout object describing the structure
// of a tree. dataSize specifies the size of input data in bytes.
func InitLayout(dataSize int64, dataAndTreeInSameFile bool) Layout {
layout := Layout{
blockSize: usermem.PageSize,
// TODO(b/156980949): Allow config other hash methods (SHA384/SHA512).
digestSize: sha256DigestSize,
}
// treeStart is the offset (in bytes) of the first level of the tree in
// the file. If data and tree are in different files, treeStart should
// be zero. If data is in the same file as the tree, treeStart points
// to the block after the last data block (which may be zero-padded).
var treeStart int64
if dataAndTreeInSameFile {
treeStart = dataSize
if dataSize%layout.blockSize != 0 {
treeStart += layout.blockSize - dataSize%layout.blockSize
}
}
numBlocks := (dataSize + layout.blockSize - 1) / layout.blockSize
level := 0
offset := int64(0)
// Calculate the number of levels in the Merkle tree and the beginning
// offset of each level. Level 0 consists of the leaf nodes that
// contain the hashes of the data blocks, while level numLevels - 1 is
// the root.
for numBlocks > 1 {
layout.levelOffset = append(layout.levelOffset, treeStart+offset*layout.blockSize)
// Round numBlocks up to fill up a block.
numBlocks += (layout.hashesPerBlock() - numBlocks%layout.hashesPerBlock()) % layout.hashesPerBlock()
offset += numBlocks / layout.hashesPerBlock()
numBlocks = numBlocks / layout.hashesPerBlock()
level++
}
layout.levelOffset = append(layout.levelOffset, treeStart+offset*layout.blockSize)
return layout
}
// hashesPerBlock() returns the number of digests in each block. For example,
// if blockSize is 4096 bytes, and digestSize is 32 bytes, there will be 128
// hashesPerBlock. Therefore 128 hashes in one level will be combined in one
// hash in the level above.
func (layout Layout) hashesPerBlock() int64 {
return layout.blockSize / layout.digestSize
}
// numLevels returns the total number of levels in the Merkle tree.
func (layout Layout) numLevels() int {
return len(layout.levelOffset)
}
// rootLevel returns the level of the root hash.
func (layout Layout) rootLevel() int {
return layout.numLevels() - 1
}
// digestOffset finds the offset of a digest from the beginning of the tree.
// The target digest is at level of the tree, with index from the beginning of
// the current level.
func (layout Layout) digestOffset(level int, index int64) int64 {
return layout.levelOffset[level] + index*layout.digestSize
}
// blockOffset finds the offset of a block from the beginning of the tree. The
// target block is at level of the tree, with index from the beginning of the
// current level.
func (layout Layout) blockOffset(level int, index int64) int64 {
return layout.levelOffset[level] + index*layout.blockSize
}
// Generate constructs a Merkle tree for the contents of data. The output is
// written to treeWriter. The treeReader should be able to read the tree after
// it has been written. That is, treeWriter and treeReader should point to the
// same underlying data but have separate cursors.
// Generate will modify the cursor for data, but always restores it to its
// original position upon exit. The cursor for tree is modified and not
// restored.
func Generate(data io.ReadSeeker, dataSize int64, treeReader io.ReadSeeker, treeWriter io.WriteSeeker, dataAndTreeInSameFile bool) ([]byte, error) {
layout := InitLayout(dataSize, dataAndTreeInSameFile)
numBlocks := (dataSize + layout.blockSize - 1) / layout.blockSize
// If the data is in the same file as the tree, zero pad the last data
// block.
bytesInLastBlock := dataSize % layout.blockSize
if dataAndTreeInSameFile && bytesInLastBlock != 0 {
zeroBuf := make([]byte, layout.blockSize-bytesInLastBlock)
if _, err := treeWriter.Seek(0, io.SeekEnd); err != nil && err != io.EOF {
return nil, err
}
if _, err := treeWriter.Write(zeroBuf); err != nil {
return nil, err
}
}
// Store the current offset, so we can set it back once verification
// finishes.
origOffset, err := data.Seek(0, io.SeekCurrent)
if err != nil {
return nil, err
}
defer data.Seek(origOffset, io.SeekStart)
// Read from the beginning of both data and treeReader.
if _, err := data.Seek(0, io.SeekStart); err != nil && err != io.EOF {
return nil, err
}
if _, err := treeReader.Seek(0, io.SeekStart); err != nil && err != io.EOF {
return nil, err
}
var root []byte
for level := 0; level < layout.numLevels(); level++ {
for i := int64(0); i < numBlocks; i++ {
buf := make([]byte, layout.blockSize)
var (
n int
err error
)
if level == 0 {
// Read data block from the target file since level 0 includes hashes
// of blocks in the input data.
n, err = data.Read(buf)
} else {
// Read data block from the tree file since levels higher than 0 are
// hashing the lower level hashes.
n, err = treeReader.Read(buf)
}
// err is populated as long as the bytes read is smaller than the buffer
// size. This could be the case if we are reading the last block, and
// break in that case. If this is the last block, the end of the block
// will be zero-padded.
if n == 0 && err == io.EOF {
break
} else if err != nil && err != io.EOF {
return nil, err
}
// Hash the bytes in buf.
digest := sha256.Sum256(buf)
if level == layout.rootLevel() {
root = digest[:]
}
// Write the generated hash to the end of the tree file.
if _, err = treeWriter.Write(digest[:]); err != nil {
return nil, err
}
}
// If the generated digests do not round up to a block, zero-padding the
// remaining of the last block. But no need to do so for root.
if level != layout.rootLevel() && numBlocks%layout.hashesPerBlock() != 0 {
zeroBuf := make([]byte, layout.blockSize-(numBlocks%layout.hashesPerBlock())*layout.digestSize)
if _, err := treeWriter.Write(zeroBuf[:]); err != nil {
return nil, err
}
}
numBlocks = (numBlocks + layout.hashesPerBlock() - 1) / layout.hashesPerBlock()
}
return root, nil
}
// Verify verifies the content read from data with offset. The content is
// verified against tree. If content spans across multiple blocks, each block is
// verified. Verification fails if the hash of the data does not match the tree
// at any level, or if the final root hash does not match expectedRoot.
// Once the data is verified, it will be written using w.
// Verify will modify the cursor for data, but always restores it to its
// original position upon exit. The cursor for tree is modified and not
// restored.
func Verify(w io.Writer, data, tree io.ReadSeeker, dataSize int64, readOffset int64, readSize int64, expectedRoot []byte, dataAndTreeInSameFile bool) (int64, error) {
if readSize <= 0 {
return 0, fmt.Errorf("Unexpected read size: %d", readSize)
}
layout := InitLayout(int64(dataSize), dataAndTreeInSameFile)
// Calculate the index of blocks that includes the target range in input
// data.
firstDataBlock := readOffset / layout.blockSize
lastDataBlock := (readOffset + readSize - 1) / layout.blockSize
// Store the current offset, so we can set it back once verification
// finishes.
origOffset, err := data.Seek(0, io.SeekCurrent)
if err != nil {
return 0, fmt.Errorf("Find current data offset failed: %v", err)
}
defer data.Seek(origOffset, io.SeekStart)
// Move to the first block that contains target data.
if _, err := data.Seek(firstDataBlock*layout.blockSize, io.SeekStart); err != nil {
return 0, fmt.Errorf("Seek to datablock start failed: %v", err)
}
buf := make([]byte, layout.blockSize)
var readErr error
total := int64(0)
for i := firstDataBlock; i <= lastDataBlock; i++ {
// Read a block that includes all or part of target range in
// input data.
bytesRead, err := data.Read(buf)
readErr = err
// If at the end of input data and all previous blocks are
// verified, return the verified input data and EOF.
if readErr == io.EOF && bytesRead == 0 {
break
}
if readErr != nil && readErr != io.EOF {
return 0, fmt.Errorf("Read from data failed: %v", err)
}
// If this is the end of file, zero the remaining bytes in buf,
// otherwise they are still from the previous block.
// TODO(b/162908070): Investigate possible issues with zero
// padding the data.
if bytesRead < len(buf) {
for j := bytesRead; j < len(buf); j++ {
buf[j] = 0
}
}
if err := verifyBlock(tree, layout, buf, i, expectedRoot); err != nil {
return 0, err
}
// startOff is the beginning of the read range within the
// current data block. Note that for all blocks other than the
// first, startOff should be 0.
startOff := int64(0)
if i == firstDataBlock {
startOff = readOffset % layout.blockSize
}
// endOff is the end of the read range within the current data
// block. Note that for all blocks other than the last, endOff
// should be the block size.
endOff := layout.blockSize
if i == lastDataBlock {
endOff = (readOffset+readSize-1)%layout.blockSize + 1
}
// If the provided size exceeds the end of input data, we should
// only copy the parts in buf that's part of input data.
if startOff > int64(bytesRead) {
startOff = int64(bytesRead)
}
if endOff > int64(bytesRead) {
endOff = int64(bytesRead)
}
n, err := w.Write(buf[startOff:endOff])
if err != nil {
return total, err
}
total += int64(n)
}
return total, readErr
}
// verifyBlock verifies a block against tree. index is the number of block in
// original data. The block is verified through each level of the tree. It
// fails if the calculated hash from block is different from any level of
// hashes stored in tree. And the final root hash is compared with
// expectedRoot. verifyBlock modifies the cursor for tree. Users needs to
// maintain the cursor if intended.
func verifyBlock(tree io.ReadSeeker, layout Layout, dataBlock []byte, blockIndex int64, expectedRoot []byte) error {
if len(dataBlock) != int(layout.blockSize) {
return fmt.Errorf("incorrect block size")
}
expectedDigest := make([]byte, layout.digestSize)
treeBlock := make([]byte, layout.blockSize)
var digest []byte
for level := 0; level < layout.numLevels(); level++ {
// Calculate hash.
if level == 0 {
digestArray := sha256.Sum256(dataBlock)
digest = digestArray[:]
} else {
// Read a block in previous level that contains the
// hash we just generated, and generate a next level
// hash from it.
if _, err := tree.Seek(layout.blockOffset(level-1, blockIndex), io.SeekStart); err != nil {
return err
}
if _, err := tree.Read(treeBlock); err != nil {
return err
}
digestArray := sha256.Sum256(treeBlock)
digest = digestArray[:]
}
// Move to stored hash for the current block, read the digest
// and store in expectedDigest.
if _, err := tree.Seek(layout.digestOffset(level, blockIndex), io.SeekStart); err != nil {
return err
}
if _, err := tree.Read(expectedDigest); err != nil {
return err
}
if !bytes.Equal(digest, expectedDigest) {
return fmt.Errorf("Verification failed")
}
// If this is the root layer, no need to generate next level
// hash.
if level == layout.rootLevel() {
break
}
blockIndex = blockIndex / layout.hashesPerBlock()
}
// Verification for the tree succeeded. Now compare the root hash in the
// tree with expectedRoot.
if !bytes.Equal(digest[:], expectedRoot) {
return fmt.Errorf("Verification failed")
}
return nil
}
|