1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
|
// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package merkletree implements Merkle tree generating and verification.
package merkletree
import (
"bytes"
"crypto/sha256"
"crypto/sha512"
"encoding/gob"
"fmt"
"io"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/hostarch"
)
const (
// sha256DigestSize specifies the digest size of a SHA256 hash.
sha256DigestSize = 32
// sha512DigestSize specifies the digest size of a SHA512 hash.
sha512DigestSize = 64
)
// DigestSize returns the size (in bytes) of a digest.
func DigestSize(hashAlgorithm int) int {
switch hashAlgorithm {
case linux.FS_VERITY_HASH_ALG_SHA256:
return sha256DigestSize
case linux.FS_VERITY_HASH_ALG_SHA512:
return sha512DigestSize
default:
return -1
}
}
// Layout defines the scale of a Merkle tree.
type Layout struct {
// blockSize is the size of a data block to be hashed.
blockSize int64
// digestSize is the size of a generated hash.
digestSize int64
// levelOffset contains the offset of the beginning of each level in
// bytes. The number of levels in the tree is the length of the slice.
// The leaf nodes (level 0) contain hashes of blocks of the input data.
// Each level N contains hashes of the blocks in level N-1. The highest
// level is the root hash.
levelOffset []int64
}
// InitLayout initializes and returns a new Layout object describing the structure
// of a tree. dataSize specifies the size of input data in bytes.
func InitLayout(dataSize int64, hashAlgorithms int, dataAndTreeInSameFile bool) (Layout, error) {
layout := Layout{
blockSize: hostarch.PageSize,
}
switch hashAlgorithms {
case linux.FS_VERITY_HASH_ALG_SHA256:
layout.digestSize = sha256DigestSize
case linux.FS_VERITY_HASH_ALG_SHA512:
layout.digestSize = sha512DigestSize
default:
return Layout{}, fmt.Errorf("unexpected hash algorithms")
}
// treeStart is the offset (in bytes) of the first level of the tree in
// the file. If data and tree are in different files, treeStart should
// be zero. If data is in the same file as the tree, treeStart points
// to the block after the last data block (which may be zero-padded).
var treeStart int64
if dataAndTreeInSameFile {
treeStart = dataSize
if dataSize%layout.blockSize != 0 {
treeStart += layout.blockSize - dataSize%layout.blockSize
}
}
numBlocks := (dataSize + layout.blockSize - 1) / layout.blockSize
level := 0
offset := int64(0)
// Calculate the number of levels in the Merkle tree and the beginning
// offset of each level. Level 0 consists of the leaf nodes that
// contain the hashes of the data blocks, while level numLevels - 1 is
// the root.
for numBlocks > 1 {
layout.levelOffset = append(layout.levelOffset, treeStart+offset*layout.blockSize)
// Round numBlocks up to fill up a block.
numBlocks += (layout.hashesPerBlock() - numBlocks%layout.hashesPerBlock()) % layout.hashesPerBlock()
offset += numBlocks / layout.hashesPerBlock()
numBlocks = numBlocks / layout.hashesPerBlock()
level++
}
layout.levelOffset = append(layout.levelOffset, treeStart+offset*layout.blockSize)
return layout, nil
}
// hashesPerBlock() returns the number of digests in each block. For example,
// if blockSize is 4096 bytes, and digestSize is 32 bytes, there will be 128
// hashesPerBlock. Therefore 128 hashes in one level will be combined in one
// hash in the level above.
func (layout Layout) hashesPerBlock() int64 {
return layout.blockSize / layout.digestSize
}
// numLevels returns the total number of levels in the Merkle tree.
func (layout Layout) numLevels() int {
return len(layout.levelOffset)
}
// rootLevel returns the level of the root hash.
func (layout Layout) rootLevel() int {
return layout.numLevels() - 1
}
// digestOffset finds the offset of a digest from the beginning of the tree.
// The target digest is at level of the tree, with index from the beginning of
// the current level.
func (layout Layout) digestOffset(level int, index int64) int64 {
return layout.levelOffset[level] + index*layout.digestSize
}
// blockOffset finds the offset of a block from the beginning of the tree. The
// target block is at level of the tree, with index from the beginning of the
// current level.
func (layout Layout) blockOffset(level int, index int64) int64 {
return layout.levelOffset[level] + index*layout.blockSize
}
// VerityDescriptor is a struct that is serialized and hashed to get a file's
// root hash, which contains the root hash of the raw content and the file's
// meatadata.
type VerityDescriptor struct {
Name string
FileSize int64
Mode uint32
UID uint32
GID uint32
Children []string
SymlinkTarget string
RootHash []byte
}
func (d *VerityDescriptor) encode() []byte {
b := new(bytes.Buffer)
e := gob.NewEncoder(b)
e.Encode(d)
return b.Bytes()
}
// verify generates a hash from d, and compares it with expected.
func (d *VerityDescriptor) verify(expected []byte, hashAlgorithms int) error {
h, err := hashData(d.encode(), hashAlgorithms)
if err != nil {
return err
}
if !bytes.Equal(h[:], expected) {
return fmt.Errorf("unexpected root hash")
}
return nil
}
// hashData hashes data and returns the result hash based on the hash
// algorithms.
func hashData(data []byte, hashAlgorithms int) ([]byte, error) {
var digest []byte
switch hashAlgorithms {
case linux.FS_VERITY_HASH_ALG_SHA256:
digestArray := sha256.Sum256(data)
digest = digestArray[:]
case linux.FS_VERITY_HASH_ALG_SHA512:
digestArray := sha512.Sum512(data)
digest = digestArray[:]
default:
return nil, fmt.Errorf("unexpected hash algorithms")
}
return digest, nil
}
// GenerateParams contains the parameters used to generate a Merkle tree for a
// given file.
type GenerateParams struct {
// File is a reader of the file to be hashed.
File io.ReaderAt
// Size is the size of the file.
Size int64
// Name is the name of the target file.
Name string
// Mode is the mode of the target file.
Mode uint32
// UID is the user ID of the target file.
UID uint32
// GID is the group ID of the target file.
GID uint32
// Children is a map of children names for a directory. It should be
// empty for a regular file.
Children []string
// SymlinkTarget is the target path of a symlink file, or "" if the file is not a symlink.
SymlinkTarget string
// HashAlgorithms is the algorithms used to hash data.
HashAlgorithms int
// TreeReader is a reader for the Merkle tree.
TreeReader io.ReaderAt
// TreeWriter is a writer for the Merkle tree.
TreeWriter io.Writer
// DataAndTreeInSameFile is true if data and Merkle tree are in the same
// file, or false if Merkle tree is a separate file from data.
DataAndTreeInSameFile bool
}
// Generate constructs a Merkle tree for the contents of params.File. The
// output is written to params.TreeWriter.
//
// Generate returns a hash of a VerityDescriptor, which contains the file
// metadata and the hash from file content.
func Generate(params *GenerateParams) ([]byte, error) {
descriptor := VerityDescriptor{
FileSize: params.Size,
Name: params.Name,
Mode: params.Mode,
UID: params.UID,
GID: params.GID,
Children: params.Children,
SymlinkTarget: params.SymlinkTarget,
}
// If file is a symlink do not generate root hash for file content.
if params.SymlinkTarget != "" {
return hashData(descriptor.encode(), params.HashAlgorithms)
}
layout, err := InitLayout(params.Size, params.HashAlgorithms, params.DataAndTreeInSameFile)
if err != nil {
return nil, err
}
numBlocks := (params.Size + layout.blockSize - 1) / layout.blockSize
// If the data is in the same file as the tree, zero pad the last data
// block.
bytesInLastBlock := params.Size % layout.blockSize
if params.DataAndTreeInSameFile && bytesInLastBlock != 0 {
zeroBuf := make([]byte, layout.blockSize-bytesInLastBlock)
if _, err := params.TreeWriter.Write(zeroBuf); err != nil {
return nil, err
}
}
var root []byte
for level := 0; level < layout.numLevels(); level++ {
for i := int64(0); i < numBlocks; i++ {
buf := make([]byte, layout.blockSize)
var (
n int
err error
)
if level == 0 {
// Read data block from the target file since level 0 includes hashes
// of blocks in the input data.
n, err = params.File.ReadAt(buf, i*layout.blockSize)
} else {
// Read data block from the tree file since levels higher than 0 are
// hashing the lower level hashes.
n, err = params.TreeReader.ReadAt(buf, layout.blockOffset(level-1, i))
}
// err is populated as long as the bytes read is smaller than the buffer
// size. This could be the case if we are reading the last block, and
// break in that case. If this is the last block, the end of the block
// will be zero-padded.
if n == 0 && err == io.EOF {
break
} else if err != nil && err != io.EOF {
return nil, err
}
// Hash the bytes in buf.
digest, err := hashData(buf, params.HashAlgorithms)
if err != nil {
return nil, err
}
if level == layout.rootLevel() {
root = digest
}
// Write the generated hash to the end of the tree file.
if _, err = params.TreeWriter.Write(digest[:]); err != nil {
return nil, err
}
}
// If the generated digests do not round up to a block, zero-padding the
// remaining of the last block. But no need to do so for root.
if level != layout.rootLevel() && numBlocks%layout.hashesPerBlock() != 0 {
zeroBuf := make([]byte, layout.blockSize-(numBlocks%layout.hashesPerBlock())*layout.digestSize)
if _, err := params.TreeWriter.Write(zeroBuf[:]); err != nil {
return nil, err
}
}
numBlocks = (numBlocks + layout.hashesPerBlock() - 1) / layout.hashesPerBlock()
}
descriptor.RootHash = root
return hashData(descriptor.encode(), params.HashAlgorithms)
}
// VerifyParams contains the params used to verify a portion of a file against
// a Merkle tree.
type VerifyParams struct {
// Out will be filled with verified data.
Out io.Writer
// File is a handler on the file to be verified.
File io.ReaderAt
// tree is a handler on the Merkle tree used to verify file.
Tree io.ReaderAt
// Size is the size of the file.
Size int64
// Name is the name of the target file.
Name string
// Mode is the mode of the target file.
Mode uint32
// UID is the user ID of the target file.
UID uint32
// GID is the group ID of the target file.
GID uint32
// Children is a map of children names for a directory. It should be
// empty for a regular file.
Children []string
// SymlinkTarget is the target path of a symlink file, or "" if the file is not a symlink.
SymlinkTarget string
// HashAlgorithms is the algorithms used to hash data.
HashAlgorithms int
// ReadOffset is the offset of the data range to be verified.
ReadOffset int64
// ReadSize is the size of the data range to be verified.
ReadSize int64
// Expected is a trusted hash for the file. It is compared with the
// calculated root hash to verify the content.
Expected []byte
// DataAndTreeInSameFile is true if data and Merkle tree are in the same
// file, or false if Merkle tree is a separate file from data.
DataAndTreeInSameFile bool
}
// verifyMetadata verifies the metadata by hashing a descriptor that contains
// the metadata and compare the generated hash with expected.
//
// For verifyMetadata, params.data is not needed. It only accesses params.tree
// for the raw root hash.
func verifyMetadata(params *VerifyParams, layout *Layout) error {
var root []byte
// Only read the root hash if we expect that the file is not a symlink and its
// Merkle tree file is non-empty.
if params.Size != 0 && params.SymlinkTarget == "" {
root = make([]byte, layout.digestSize)
if _, err := params.Tree.ReadAt(root, layout.blockOffset(layout.rootLevel(), 0 /* index */)); err != nil {
return fmt.Errorf("failed to read root hash: %w", err)
}
}
descriptor := VerityDescriptor{
Name: params.Name,
FileSize: params.Size,
Mode: params.Mode,
UID: params.UID,
GID: params.GID,
Children: params.Children,
SymlinkTarget: params.SymlinkTarget,
RootHash: root,
}
return descriptor.verify(params.Expected, params.HashAlgorithms)
}
// Verify verifies the content read from data with offset. The content is
// verified against tree. If content spans across multiple blocks, each block is
// verified. Verification fails if the hash of the data does not match the tree
// at any level, or if the final root hash does not match expected.
// Once the data is verified, it will be written using params.Out.
//
// Verify checks for both target file content and metadata. If readSize is 0,
// only metadata is checked.
func Verify(params *VerifyParams) (int64, error) {
if params.ReadSize < 0 {
return 0, fmt.Errorf("unexpected read size: %d", params.ReadSize)
}
layout, err := InitLayout(int64(params.Size), params.HashAlgorithms, params.DataAndTreeInSameFile)
if err != nil {
return 0, err
}
if params.ReadSize == 0 {
return 0, verifyMetadata(params, &layout)
}
// Calculate the index of blocks that includes the target range in input
// data.
firstDataBlock := params.ReadOffset / layout.blockSize
lastDataBlock := (params.ReadOffset + params.ReadSize - 1) / layout.blockSize
size := (lastDataBlock - firstDataBlock + 1) * layout.blockSize
retBuf := make([]byte, size)
n, err := params.File.ReadAt(retBuf, firstDataBlock*layout.blockSize)
if err != nil && err != io.EOF {
return 0, err
}
total := int64(n)
bytesRead := int64(0)
for i := firstDataBlock; i <= lastDataBlock; i++ {
// Reach the end of file during verification.
if total <= 0 {
return bytesRead, io.EOF
}
// Read a block that includes all or part of target range in
// input data.
buf := retBuf[(i-firstDataBlock)*layout.blockSize : (i-firstDataBlock+1)*layout.blockSize]
descriptor := VerityDescriptor{
Name: params.Name,
FileSize: params.Size,
Mode: params.Mode,
UID: params.UID,
GID: params.GID,
SymlinkTarget: params.SymlinkTarget,
Children: params.Children,
}
if err := verifyBlock(params.Tree, &descriptor, &layout, buf, i, params.HashAlgorithms, params.Expected); err != nil {
return bytesRead, err
}
// startOff is the beginning of the read range within the
// current data block. Note that for all blocks other than the
// first, startOff should be 0.
startOff := int64(0)
if i == firstDataBlock {
startOff = params.ReadOffset % layout.blockSize
}
// endOff is the end of the read range within the current data
// block. Note that for all blocks other than the last, endOff
// should be the block size.
endOff := layout.blockSize
if i == lastDataBlock {
endOff = (params.ReadOffset+params.ReadSize-1)%layout.blockSize + 1
}
// If the provided size exceeds the end of input data, we should
// only copy the parts in buf that's part of input data.
if startOff > total {
startOff = total
}
if endOff > total {
endOff = total
}
n, err := params.Out.Write(buf[startOff:endOff])
if err != nil {
return bytesRead, err
}
bytesRead += int64(n)
total -= endOff
}
return bytesRead, nil
}
// verifyBlock verifies a block against tree. index is the number of block in
// original data. The block is verified through each level of the tree. It
// fails if the calculated hash from block is different from any level of
// hashes stored in tree. And the final root hash is compared with
// expected.
func verifyBlock(tree io.ReaderAt, descriptor *VerityDescriptor, layout *Layout, dataBlock []byte, blockIndex int64, hashAlgorithms int, expected []byte) error {
if len(dataBlock) != int(layout.blockSize) {
return fmt.Errorf("incorrect block size")
}
expectedDigest := make([]byte, layout.digestSize)
treeBlock := make([]byte, layout.blockSize)
var digest []byte
for level := 0; level < layout.numLevels(); level++ {
// Calculate hash.
if level == 0 {
h, err := hashData(dataBlock, hashAlgorithms)
if err != nil {
return err
}
digest = h
} else {
// Read a block in previous level that contains the
// hash we just generated, and generate a next level
// hash from it.
if _, err := tree.ReadAt(treeBlock, layout.blockOffset(level-1, blockIndex)); err != nil {
return err
}
h, err := hashData(treeBlock, hashAlgorithms)
if err != nil {
return err
}
digest = h
}
// Read the digest for the current block and store in
// expectedDigest.
if _, err := tree.ReadAt(expectedDigest, layout.digestOffset(level, blockIndex)); err != nil {
return err
}
if !bytes.Equal(digest, expectedDigest) {
return fmt.Errorf("verification failed")
}
blockIndex = blockIndex / layout.hashesPerBlock()
}
// Verification for the tree succeeded. Now hash the descriptor with
// the root hash and compare it with expected.
descriptor.RootHash = digest
return descriptor.verify(expected, hashAlgorithms)
}
|