1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
|
// Copyright 2021 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package lisafs
import (
"fmt"
"math"
"golang.org/x/sys/unix"
"gvisor.dev/gvisor/pkg/cleanup"
"gvisor.dev/gvisor/pkg/flipcall"
"gvisor.dev/gvisor/pkg/log"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/unet"
)
// Client helps manage a connection to the lisafs server and pass messages
// efficiently. There is a 1:1 mapping between a Connection and a Client.
type Client struct {
// sockComm is the main socket by which this connections is established.
// Communication over the socket is synchronized by sockMu.
sockMu sync.Mutex
sockComm *sockCommunicator
// channelsMu protects channels and availableChannels.
channelsMu sync.Mutex
// channels tracks all the channels.
channels []*channel
// availableChannels is a LIFO (stack) of channels available to be used.
availableChannels []*channel
// activeWg represents active channels.
activeWg sync.WaitGroup
// watchdogWg only holds the watchdog goroutine.
watchdogWg sync.WaitGroup
// supported caches information about which messages are supported. It is
// indexed by MID. An MID is supported if supported[MID] is true.
supported []bool
// maxMessageSize is the maximum payload length (in bytes) that can be sent.
// It is initialized on Mount and is immutable.
maxMessageSize uint32
}
// NewClient creates a new client for communication with the server. It mounts
// the server and creates channels for fast IPC. NewClient takes ownership over
// the passed socket. On success, it returns the initialized client along with
// the root Inode.
func NewClient(sock *unet.Socket, mountPath string) (*Client, *Inode, error) {
maxChans := maxChannels()
c := &Client{
sockComm: newSockComm(sock),
channels: make([]*channel, 0, maxChans),
availableChannels: make([]*channel, 0, maxChans),
maxMessageSize: 1 << 20, // 1 MB for now.
}
// Start a goroutine to check socket health. This goroutine is also
// responsible for client cleanup.
c.watchdogWg.Add(1)
go c.watchdog()
// Clean everything up if anything fails.
cu := cleanup.Make(func() {
c.Close()
})
defer cu.Clean()
// Mount the server first. Assume Mount is supported so that we can make the
// Mount RPC below.
c.supported = make([]bool, Mount+1)
c.supported[Mount] = true
mountMsg := MountReq{
MountPath: SizedString(mountPath),
}
var mountResp MountResp
if err := c.SndRcvMessage(Mount, uint32(mountMsg.SizeBytes()), mountMsg.MarshalBytes, mountResp.UnmarshalBytes, nil); err != nil {
return nil, nil, err
}
// Initialize client.
c.maxMessageSize = uint32(mountResp.MaxMessageSize)
var maxSuppMID MID
for _, suppMID := range mountResp.SupportedMs {
if suppMID > maxSuppMID {
maxSuppMID = suppMID
}
}
c.supported = make([]bool, maxSuppMID+1)
for _, suppMID := range mountResp.SupportedMs {
c.supported[suppMID] = true
}
// Create channels parallely so that channels can be used to create more
// channels and costly initialization like flipcall.Endpoint.Connect can
// proceed parallely.
var channelsWg sync.WaitGroup
channelErrs := make([]error, maxChans)
for i := 0; i < maxChans; i++ {
channelsWg.Add(1)
curChanID := i
go func() {
defer channelsWg.Done()
ch, err := c.createChannel()
if err != nil {
log.Warningf("channel creation failed: %v", err)
channelErrs[curChanID] = err
return
}
c.channelsMu.Lock()
c.channels = append(c.channels, ch)
c.availableChannels = append(c.availableChannels, ch)
c.channelsMu.Unlock()
}()
}
channelsWg.Wait()
for _, channelErr := range channelErrs {
// Return the first non-nil channel creation error.
if channelErr != nil {
return nil, nil, channelErr
}
}
cu.Release()
return c, &mountResp.Root, nil
}
func (c *Client) watchdog() {
defer c.watchdogWg.Done()
events := []unix.PollFd{
{
Fd: int32(c.sockComm.FD()),
Events: unix.POLLHUP | unix.POLLRDHUP,
},
}
// Wait for a shutdown event.
for {
n, err := unix.Ppoll(events, nil, nil)
if err == unix.EINTR || err == unix.EAGAIN {
continue
}
if err != nil {
log.Warningf("lisafs.Client.watch(): %v", err)
} else if n != 1 {
log.Warningf("lisafs.Client.watch(): got %d events, wanted 1", n)
}
break
}
// Shutdown all active channels and wait for them to complete.
c.shutdownActiveChans()
c.activeWg.Wait()
// Close all channels.
c.channelsMu.Lock()
for _, ch := range c.channels {
ch.destroy()
}
c.channelsMu.Unlock()
// Close main socket.
c.sockComm.destroy()
}
func (c *Client) shutdownActiveChans() {
c.channelsMu.Lock()
defer c.channelsMu.Unlock()
availableChans := make(map[*channel]bool)
for _, ch := range c.availableChannels {
availableChans[ch] = true
}
for _, ch := range c.channels {
// A channel that is not available is active.
if _, ok := availableChans[ch]; !ok {
log.Debugf("shutting down active channel@%p...", ch)
ch.shutdown()
}
}
// Prevent channels from becoming available and serving new requests.
c.availableChannels = nil
}
// Close shuts down the main socket and waits for the watchdog to clean up.
func (c *Client) Close() {
// This shutdown has no effect if the watchdog has already fired and closed
// the main socket.
c.sockComm.shutdown()
c.watchdogWg.Wait()
}
func (c *Client) createChannel() (*channel, error) {
var chanResp ChannelResp
var fds [2]int
if err := c.SndRcvMessage(Channel, 0, NoopMarshal, chanResp.UnmarshalUnsafe, fds[:]); err != nil {
return nil, err
}
if fds[0] < 0 || fds[1] < 0 {
closeFDs(fds[:])
return nil, fmt.Errorf("insufficient FDs provided in Channel response: %v", fds)
}
// Lets create the channel.
defer closeFDs(fds[:1]) // The data FD is not needed after this.
desc := flipcall.PacketWindowDescriptor{
FD: fds[0],
Offset: chanResp.dataOffset,
Length: int(chanResp.dataLength),
}
ch := &channel{}
if err := ch.data.Init(flipcall.ClientSide, desc); err != nil {
closeFDs(fds[1:])
return nil, err
}
ch.fdChan.Init(fds[1]) // fdChan now owns this FD.
// Only a connected channel is usable.
if err := ch.data.Connect(); err != nil {
ch.destroy()
return nil, err
}
return ch, nil
}
// IsSupported returns true if this connection supports the passed message.
func (c *Client) IsSupported(m MID) bool {
return int(m) < len(c.supported) && c.supported[m]
}
// SndRcvMessage invokes reqMarshal to marshal the request onto the payload
// buffer, wakes up the server to process the request, waits for the response
// and invokes respUnmarshal with the response payload. respFDs is populated
// with the received FDs, extra fields are set to -1.
//
// Note that the function arguments intentionally accept marshal.Marshallable
// functions like Marshal{Bytes/Unsafe} and Unmarshal{Bytes/Unsafe} instead of
// directly accepting the marshal.Marshallable interface. Even though just
// accepting marshal.Marshallable is cleaner, it leads to a heap allocation
// (even if that interface variable itself does not escape). In other words,
// implicit conversion to an interface leads to an allocation.
//
// Precondition: reqMarshal and respUnmarshal must be non-nil.
func (c *Client) SndRcvMessage(m MID, payloadLen uint32, reqMarshal func(dst []byte), respUnmarshal func(src []byte), respFDs []int) error {
if !c.IsSupported(m) {
return unix.EOPNOTSUPP
}
if payloadLen > c.maxMessageSize {
log.Warningf("message %d has message size = %d which is larger than client.maxMessageSize = %d", m, payloadLen, c.maxMessageSize)
return unix.EIO
}
wantFDs := len(respFDs)
if wantFDs > math.MaxUint8 {
log.Warningf("want too many FDs: %d", wantFDs)
return unix.EINVAL
}
// Acquire a communicator.
comm := c.acquireCommunicator()
defer c.releaseCommunicator(comm)
// Marshal the request into comm's payload buffer and make the RPC.
reqMarshal(comm.PayloadBuf(payloadLen))
respM, respPayloadLen, err := comm.SndRcvMessage(m, payloadLen, uint8(wantFDs))
// Handle FD donation.
rcvFDs := comm.ReleaseFDs()
if numRcvFDs := len(rcvFDs); numRcvFDs+wantFDs > 0 {
// releasedFDs is memory owned by comm which can not be returned to caller.
// Copy it into the caller's buffer.
numFDCopied := copy(respFDs, rcvFDs)
if numFDCopied < numRcvFDs {
log.Warningf("%d unexpected FDs were donated by the server, wanted", numRcvFDs-numFDCopied, wantFDs)
closeFDs(rcvFDs[numFDCopied:])
}
if numFDCopied < wantFDs {
for i := numFDCopied; i < wantFDs; i++ {
respFDs[i] = -1
}
}
}
// Error cases.
if err != nil {
closeFDs(respFDs)
return err
}
if respM == Error {
closeFDs(respFDs)
var resp ErrorResp
resp.UnmarshalUnsafe(comm.PayloadBuf(respPayloadLen))
return unix.Errno(resp.errno)
}
if respM != m {
closeFDs(respFDs)
log.Warningf("sent %d message but got %d in response", m, respM)
return unix.EINVAL
}
// Success. The payload must be unmarshalled *before* comm is released.
respUnmarshal(comm.PayloadBuf(respPayloadLen))
return nil
}
// Postcondition: releaseCommunicator() must be called on the returned value.
func (c *Client) acquireCommunicator() Communicator {
// Prefer using channel over socket because:
// - Channel uses a shared memory region for passing messages. IO from shared
// memory is faster and does not involve making a syscall.
// - No intermediate buffer allocation needed. With a channel, the message
// can be directly pasted into the shared memory region.
if ch := c.getChannel(); ch != nil {
return ch
}
c.sockMu.Lock()
return c.sockComm
}
// Precondition: comm must have been acquired via acquireCommunicator().
func (c *Client) releaseCommunicator(comm Communicator) {
switch t := comm.(type) {
case *sockCommunicator:
c.sockMu.Unlock() // +checklocksforce: locked in acquireCommunicator().
case *channel:
c.releaseChannel(t)
default:
panic(fmt.Sprintf("unknown communicator type %T", t))
}
}
// getChannel pops a channel from the available channels stack. The caller must
// release the channel after use.
func (c *Client) getChannel() *channel {
c.channelsMu.Lock()
defer c.channelsMu.Unlock()
if len(c.availableChannels) == 0 {
return nil
}
idx := len(c.availableChannels) - 1
ch := c.availableChannels[idx]
c.availableChannels = c.availableChannels[:idx]
c.activeWg.Add(1)
return ch
}
// releaseChannel pushes the passed channel onto the available channel stack if
// reinsert is true.
func (c *Client) releaseChannel(ch *channel) {
c.channelsMu.Lock()
defer c.channelsMu.Unlock()
// If availableChannels is nil, then watchdog has fired and the client is
// shutting down. So don't make this channel available again.
if !ch.dead && c.availableChannels != nil {
c.availableChannels = append(c.availableChannels, ch)
}
c.activeWg.Done()
}
|