1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
|
// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build arm64
package cpuid
import (
"bytes"
"encoding/binary"
"fmt"
"io/ioutil"
"strconv"
"strings"
"gvisor.dev/gvisor/pkg/log"
)
// ARM64 doesn't have a 'cpuid' equivalent, which means it have no architected
// discovery mechanism for hardware features available to userspace code at EL0.
// The kernel exposes the presence of these features to userspace through a set
// of flags(HWCAP/HWCAP2) bits, exposed in the auxilliary vector.
// Ref Documentation/arm64/elf_hwcaps.rst for more info.
//
// Currently, only the HWCAP bits are supported.
const (
// Single and double precision float point types.
ARM64FeatureFP Feature = iota
// Advanced SIMD with single and double precision
// float point arithmetic.
ARM64FeatureASIMD
// The generic timer is configured to generate
// events at a frequency of approximately 100KHz.
ARM64FeatureEVTSTRM
// AES instructions(AESE/AESD/AESMC/AESIMC).
ARM64FeatureAES
// AES instructions(PMULL/PMULL2).
ARM64FeaturePMULL
// SHA1 instructions(SHA1C/SHA1P/SHA1M etc).
ARM64FeatureSHA1
// SHA2 instructions(SHA256H/SHA256H2/SHA256SU0 etc).
ARM64FeatureSHA2
// CRC32 instructions(CRC32B/CRC32H/CRC32W etc).
ARM64FeatureCRC32
// Atomic instructions(LDADD/LDCLR/LDEOR/LDSET etc).
ARM64FeatureATOMICS
// Half precision float point arithmetic.
ARM64FeatureFPHP
// ASIMD with half precision float point arithmetic.
ARM64FeatureASIMDHP
// EL0 access to certain ID registers is available.
ARM64FeatureCPUID
// SQRDMLAH and SQRDMLSH instructions implemented.
ARM64FeatureASIMDRDM
// The FJCVTZS instruction is implemented.
ARM64FeatureJSCVT
// The FCMLA and FCADD instructions are implemented.
ARM64FeatureFCMA
// The LDAPRB/LDAPRH/LDAPR instructions are implemented.
ARM64FeatureLRCPC
// DC instruction(DC CVAP) supported.
ARM64FeatureDCPOP
// SHA3 instructions(EOR3/RAX1/XAR/BCAX) implemented.
ARM64FeatureSHA3
// SM3 instructions(SM3SS1/SM3TT1A/SM3TT1B) implemented.
ARM64FeatureSM3
// SM4 instructions(SM4E/SM4EKEY) implemented.
ARM64FeatureSM4
// Dot Product instructions(UDOT/SDOT) implemented.
ARM64FeatureASIMDDP
// SHA2 instructions(SHA512H/SHA512H2/SHA512SU0) implemented.
ARM64FeatureSHA512
// Scalable Vector Extension implemented.
ARM64FeatureSVE
// FMLAL and FMLSL instructions are implemented.
ARM64FeatureASIMDFHM
)
// ELF auxiliary vector tags
const (
_AT_NULL = 0 // End of vector
_AT_HWCAP = 16 // hardware capability bit vector
_AT_HWCAP2 = 26 // hardware capability bit vector 2
)
// These should not be changed after they are initialized.
var hwCap uint
// To make emulation of /proc/cpuinfo easy, these names match the names of the
// basic features in Linux defined in arch/arm64/kernel/cpuinfo.c.
var arm64FeatureStrings = map[Feature]string{
ARM64FeatureFP: "fp",
ARM64FeatureASIMD: "asimd",
ARM64FeatureEVTSTRM: "evtstrm",
ARM64FeatureAES: "aes",
ARM64FeaturePMULL: "pmull",
ARM64FeatureSHA1: "sha1",
ARM64FeatureSHA2: "sha2",
ARM64FeatureCRC32: "crc32",
ARM64FeatureATOMICS: "atomics",
ARM64FeatureFPHP: "fphp",
ARM64FeatureASIMDHP: "asimdhp",
ARM64FeatureCPUID: "cpuid",
ARM64FeatureASIMDRDM: "asimdrdm",
ARM64FeatureJSCVT: "jscvt",
ARM64FeatureFCMA: "fcma",
ARM64FeatureLRCPC: "lrcpc",
ARM64FeatureDCPOP: "dcpop",
ARM64FeatureSHA3: "sha3",
ARM64FeatureSM3: "sm3",
ARM64FeatureSM4: "sm4",
ARM64FeatureASIMDDP: "asimddp",
ARM64FeatureSHA512: "sha512",
ARM64FeatureSVE: "sve",
ARM64FeatureASIMDFHM: "asimdfhm",
}
var (
cpuFreqMHz float64
cpuImplHex uint64
cpuArchDec uint64
cpuVarHex uint64
cpuPartHex uint64
cpuRevDec uint64
)
// arm64FeaturesFromString includes features from arm64FeatureStrings.
var arm64FeaturesFromString = make(map[string]Feature)
// FeatureFromString returns the Feature associated with the given feature
// string plus a bool to indicate if it could find the feature.
func FeatureFromString(s string) (Feature, bool) {
f, b := arm64FeaturesFromString[s]
return f, b
}
// String implements fmt.Stringer.
func (f Feature) String() string {
if s := f.flagString(); s != "" {
return s
}
return fmt.Sprintf("<cpuflag %d>", f)
}
func (f Feature) flagString() string {
if s, ok := arm64FeatureStrings[f]; ok {
return s
}
return ""
}
// FeatureSet is a set of Features for a CPU.
//
// +stateify savable
type FeatureSet struct {
// Set is the set of features that are enabled in this FeatureSet.
Set map[Feature]bool
// CPUImplementer is part of the processor signature.
CPUImplementer uint8
// CPUArchitecture is part of the processor signature.
CPUArchitecture uint8
// CPUVariant is part of the processor signature.
CPUVariant uint8
// CPUPartnum is part of the processor signature.
CPUPartnum uint16
// CPURevision is part of the processor signature.
CPURevision uint8
}
// CheckHostCompatible returns nil if fs is a subset of the host feature set.
// Noop on arm64.
func (fs *FeatureSet) CheckHostCompatible() error {
return nil
}
// ExtendedStateSize returns the number of bytes needed to save the "extended
// state" for this processor and the boundary it must be aligned to. Extended
// state includes floating point(NEON) registers, and other cpu state that's not
// associated with the normal task context.
func (fs *FeatureSet) ExtendedStateSize() (size, align uint) {
// ARMv8 provide 32x128bits NEON registers.
//
// Ref arch/arm64/include/uapi/asm/ptrace.h
// struct user_fpsimd_state {
// __uint128_t vregs[32];
// __u32 fpsr;
// __u32 fpcr;
// __u32 __reserved[2];
// };
return 528, 16
}
// HasFeature tests whether or not a feature is in the given feature set.
func (fs *FeatureSet) HasFeature(feature Feature) bool {
return fs.Set[feature]
}
// UseXsaveopt returns true if 'fs' supports the "xsaveopt" instruction.
// Noop on arm64.
func (fs *FeatureSet) UseXsave() bool {
return false
}
// FlagsString prints out supported CPU "flags" field in /proc/cpuinfo.
func (fs *FeatureSet) FlagsString() string {
var s []string
for f, _ := range arm64FeatureStrings {
if fs.Set[f] {
if fstr := f.flagString(); fstr != "" {
s = append(s, fstr)
}
}
}
return strings.Join(s, " ")
}
// WriteCPUInfoTo is to generate a section of one cpu in /proc/cpuinfo. This is
// a minimal /proc/cpuinfo, and the bogomips field is simply made up.
func (fs FeatureSet) WriteCPUInfoTo(cpu uint, b *bytes.Buffer) {
fmt.Fprintf(b, "processor\t: %d\n", cpu)
fmt.Fprintf(b, "BogoMIPS\t: %.02f\n", cpuFreqMHz) // It's bogus anyway.
fmt.Fprintf(b, "Features\t\t: %s\n", fs.FlagsString())
fmt.Fprintf(b, "CPU implementer\t: 0x%x\n", cpuImplHex)
fmt.Fprintf(b, "CPU architecture\t: %d\n", cpuArchDec)
fmt.Fprintf(b, "CPU variant\t: 0x%x\n", cpuVarHex)
fmt.Fprintf(b, "CPU part\t: 0x%x\n", cpuPartHex)
fmt.Fprintf(b, "CPU revision\t: %d\n", cpuRevDec)
fmt.Fprintln(b, "") // The /proc/cpuinfo file ends with an extra newline.
}
// HostFeatureSet uses hwCap to get host values and construct a feature set
// that matches that of the host machine.
func HostFeatureSet() *FeatureSet {
s := make(map[Feature]bool)
for f, _ := range arm64FeatureStrings {
if hwCap&(1<<f) != 0 {
s[f] = true
}
}
return &FeatureSet{
Set: s,
CPUImplementer: uint8(cpuImplHex),
CPUArchitecture: uint8(cpuArchDec),
CPUVariant: uint8(cpuVarHex),
CPUPartnum: uint16(cpuPartHex),
CPURevision: uint8(cpuRevDec),
}
}
// Reads bogomips from host /proc/cpuinfo. Must run before whitelisting.
// This value is used to create the fake /proc/cpuinfo from a FeatureSet.
func initCPUInfo() {
cpuinfob, err := ioutil.ReadFile("/proc/cpuinfo")
if err != nil {
// Leave it as 0. The standalone VDSO bails out in the same way.
log.Warningf("Could not read /proc/cpuinfo: %v", err)
return
}
cpuinfo := string(cpuinfob)
// We get the value straight from host /proc/cpuinfo.
for _, line := range strings.Split(cpuinfo, "\n") {
switch {
case strings.Contains(line, "BogoMIPS"):
{
splitMHz := strings.Split(line, ":")
if len(splitMHz) < 2 {
log.Warningf("Could not read /proc/cpuinfo: malformed BogoMIPS")
break
}
// If there was a problem, leave cpuFreqMHz as 0.
var err error
cpuFreqMHz, err = strconv.ParseFloat(strings.TrimSpace(splitMHz[1]), 64)
if err != nil {
log.Warningf("Could not parse BogoMIPS value %v: %v", splitMHz[1], err)
cpuFreqMHz = 0
}
}
case strings.Contains(line, "CPU implementer"):
{
splitImpl := strings.Split(line, ":")
if len(splitImpl) < 2 {
log.Warningf("Could not read /proc/cpuinfo: malformed CPU implementer")
break
}
// If there was a problem, leave cpuImplHex as 0.
var err error
cpuImplHex, err = strconv.ParseUint(strings.TrimSpace(splitImpl[1]), 0, 64)
if err != nil {
log.Warningf("Could not parse CPU implementer value %v: %v", splitImpl[1], err)
cpuImplHex = 0
}
}
case strings.Contains(line, "CPU architecture"):
{
splitArch := strings.Split(line, ":")
if len(splitArch) < 2 {
log.Warningf("Could not read /proc/cpuinfo: malformed CPU architecture")
break
}
// If there was a problem, leave cpuArchDec as 0.
var err error
cpuArchDec, err = strconv.ParseUint(strings.TrimSpace(splitArch[1]), 0, 64)
if err != nil {
log.Warningf("Could not parse CPU architecture value %v: %v", splitArch[1], err)
cpuArchDec = 0
}
}
case strings.Contains(line, "CPU variant"):
{
splitVar := strings.Split(line, ":")
if len(splitVar) < 2 {
log.Warningf("Could not read /proc/cpuinfo: malformed CPU variant")
break
}
// If there was a problem, leave cpuVarHex as 0.
var err error
cpuVarHex, err = strconv.ParseUint(strings.TrimSpace(splitVar[1]), 0, 64)
if err != nil {
log.Warningf("Could not parse CPU variant value %v: %v", splitVar[1], err)
cpuVarHex = 0
}
}
case strings.Contains(line, "CPU part"):
{
splitPart := strings.Split(line, ":")
if len(splitPart) < 2 {
log.Warningf("Could not read /proc/cpuinfo: malformed CPU part")
break
}
// If there was a problem, leave cpuPartHex as 0.
var err error
cpuPartHex, err = strconv.ParseUint(strings.TrimSpace(splitPart[1]), 0, 64)
if err != nil {
log.Warningf("Could not parse CPU part value %v: %v", splitPart[1], err)
cpuPartHex = 0
}
}
case strings.Contains(line, "CPU revision"):
{
splitRev := strings.Split(line, ":")
if len(splitRev) < 2 {
log.Warningf("Could not read /proc/cpuinfo: malformed CPU revision")
break
}
// If there was a problem, leave cpuRevDec as 0.
var err error
cpuRevDec, err = strconv.ParseUint(strings.TrimSpace(splitRev[1]), 0, 64)
if err != nil {
log.Warningf("Could not parse CPU revision value %v: %v", splitRev[1], err)
cpuRevDec = 0
}
}
}
}
}
// The auxiliary vector of a process on the Linux system can be read
// from /proc/self/auxv, and tags and values are stored as 8-bytes
// decimal key-value pairs on the 64-bit system.
//
// $ od -t d8 /proc/self/auxv
// 0000000 33 140734615224320
// 0000020 16 3219913727
// 0000040 6 4096
// 0000060 17 100
// 0000100 3 94665627353152
// 0000120 4 56
// 0000140 5 9
// 0000160 7 140425502162944
// 0000200 8 0
// 0000220 9 94665627365760
// 0000240 11 1000
// 0000260 12 1000
// 0000300 13 1000
// 0000320 14 1000
// 0000340 23 0
// 0000360 25 140734614619513
// 0000400 26 0
// 0000420 31 140734614626284
// 0000440 15 140734614619529
// 0000460 0 0
func initHwCap() {
auxv, err := ioutil.ReadFile("/proc/self/auxv")
if err != nil {
log.Warningf("Could not read /proc/self/auxv: %v", err)
return
}
l := len(auxv) / 16
for i := 0; i < l; i++ {
tag := binary.LittleEndian.Uint64(auxv[i*16:])
val := binary.LittleEndian.Uint64(auxv[(i*16 + 8):])
if tag == _AT_HWCAP {
hwCap = uint(val)
break
}
}
}
func initFeaturesFromString() {
for f, s := range arm64FeatureStrings {
arm64FeaturesFromString[s] = f
}
}
func init() {
initCPUInfo()
initHwCap()
initFeaturesFromString()
}
|