summaryrefslogtreecommitdiffhomepage
path: root/pkg/cpuid/cpuid.go
blob: 9eec45717196c60d3cbde89307deef3030785e1b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
// Copyright 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// +build i386 amd64

// Package cpuid provides basic functionality for creating and adjusting CPU
// feature sets.
//
// To use FeatureSets, one should start with an existing FeatureSet (either a
// known platform, or HostFeatureSet()) and then add, remove, and test for
// features as desired.
//
// For example: Test for hardware extended state saving, and if we don't have
// it, don't expose AVX, which cannot be saved with fxsave.
//
//   if !HostFeatureSet().HasFeature(X86FeatureXSAVE) {
//     exposedFeatures.Remove(X86FeatureAVX)
//   }
package cpuid

import (
	"bytes"
	"fmt"
	"io/ioutil"
	"strconv"
	"strings"

	"gvisor.googlesource.com/gvisor/pkg/log"
)

// Feature is a unique identifier for a particular cpu feature. We just use an
// int as a feature number on x86. It corresponds to the bit position in the
// basic feature mask returned by a cpuid with eax=1.
type Feature int

// block is a collection of 32 Feature bits.
type block int

const blockSize = 32

// Feature bits are numbered according to "blocks". Each block is 32 bits, and
// feature bits from the same source (cpuid leaf/level) are in the same block.
func featureID(b block, bit int) Feature {
	return Feature(32*int(b) + bit)
}

// Block 0 constants are all of the "basic" feature bits returned by a cpuid in
// ecx with eax=1.
const (
	X86FeatureSSE3 Feature = iota
	X86FeaturePCLMULDQ
	X86FeatureDTES64
	X86FeatureMONITOR
	X86FeatureDSCPL
	X86FeatureVMX
	X86FeatureSMX
	X86FeatureEST
	X86FeatureTM2
	X86FeatureSSSE3 // Not a typo, "supplemental" SSE3.
	X86FeatureCNXTID
	X86FeatureSDBG
	X86FeatureFMA
	X86FeatureCX16
	X86FeatureXTPR
	X86FeaturePDCM
	_ // ecx bit 16 is reserved.
	X86FeaturePCID
	X86FeatureDCA
	X86FeatureSSE4_1
	X86FeatureSSE4_2
	X86FeatureX2APIC
	X86FeatureMOVBE
	X86FeaturePOPCNT
	X86FeatureTSCD
	X86FeatureAES
	X86FeatureXSAVE
	X86FeatureOSXSAVE
	X86FeatureAVX
	X86FeatureF16C
	X86FeatureRDRAND
	_ // ecx bit 31 is reserved.
)

// Block 1 constants are all of the "basic" feature bits returned by a cpuid in
// edx with eax=1.
const (
	X86FeatureFPU Feature = 32 + iota
	X86FeatureVME
	X86FeatureDE
	X86FeaturePSE
	X86FeatureTSC
	X86FeatureMSR
	X86FeaturePAE
	X86FeatureMCE
	X86FeatureCX8
	X86FeatureAPIC
	_ // edx bit 10 is reserved.
	X86FeatureSEP
	X86FeatureMTRR
	X86FeaturePGE
	X86FeatureMCA
	X86FeatureCMOV
	X86FeaturePAT
	X86FeaturePSE36
	X86FeaturePSN
	X86FeatureCLFSH
	_ // edx bit 20 is reserved.
	X86FeatureDS
	X86FeatureACPI
	X86FeatureMMX
	X86FeatureFXSR
	X86FeatureSSE
	X86FeatureSSE2
	X86FeatureSS
	X86FeatureHTT
	X86FeatureTM
	X86FeatureIA64
	X86FeaturePBE
)

// Block 2 bits are the "structured extended" features returned in ebx for
// eax=7, ecx=0.
const (
	X86FeatureFSGSBase Feature = 2*32 + iota
	X86FeatureTSC_ADJUST
	_ // ebx bit 2 is reserved.
	X86FeatureBMI1
	X86FeatureHLE
	X86FeatureAVX2
	X86FeatureFDP_EXCPTN_ONLY
	X86FeatureSMEP
	X86FeatureBMI2
	X86FeatureERMS
	X86FeatureINVPCID
	X86FeatureRTM
	X86FeatureCQM
	X86FeatureFPCSDS
	X86FeatureMPX
	X86FeatureRDT
	X86FeatureAVX512F
	X86FeatureAVX512DQ
	X86FeatureRDSEED
	X86FeatureADX
	X86FeatureSMAP
	X86FeatureAVX512IFMA
	X86FeaturePCOMMIT
	X86FeatureCLFLUSHOPT
	X86FeatureCLWB
	X86FeatureIPT // Intel processor trace.
	X86FeatureAVX512PF
	X86FeatureAVX512ER
	X86FeatureAVX512CD
	X86FeatureSHA
	X86FeatureAVX512BW
	X86FeatureAVX512VL
)

// Block 3 bits are the "extended" features returned in ecx for eax=7, ecx=0.
const (
	X86FeaturePREFETCHWT1 Feature = 3*32 + iota
	X86FeatureAVX512VBMI
	X86FeatureUMIP
	X86FeaturePKU
)

// Block 4 constants are for xsave capabilities in CPUID.(EAX=0DH,ECX=01H):EAX.
// The CPUID leaf is available only if 'X86FeatureXSAVE' is present.
const (
	X86FeatureXSAVEOPT Feature = 4*32 + iota
	X86FeatureXSAVEC
	X86FeatureXGETBV1
	X86FeatureXSAVES
	// EAX[31:4] are reserved.
)

// Block 5 constants are the extended feature bits in
// CPUID.(EAX=0x80000001):ECX. These are very sparse, and so the bit positions
// are assigned manually.
const (
	X86FeatureLAHF64    Feature = 5*32 + 0
	X86FeatureLZCNT     Feature = 5*32 + 5
	X86FeaturePREFETCHW Feature = 5*32 + 8
)

// Block 6 constants are the extended feature bits in
// CPUID.(EAX=0x80000001):EDX. These are very sparse, and so the bit positions
// are assigned manually.
const (
	X86FeatureSYSCALL Feature = 6*32 + 11
	X86FeatureNX      Feature = 6*32 + 20
	X86FeatureGBPAGES Feature = 6*32 + 26
	X86FeatureRDTSCP  Feature = 6*32 + 27
	X86FeatureLM      Feature = 6*32 + 29
	// These are not in the most recent intel manual. Not surprising... It
	// shouldn't matter but we should find where these bits come from and
	// support them. The linux strings are below for completeness.
	//X86FeatureMMXEXT
	//X86FeatureMP
	//X86FeatureFXSR_OPT
	//X86Feature3DNOWEXT
	//X86Feature3DNOW
	//X86FeatureMMXEXT:      "mmxext",
	//X86FeatureMP:          "mp",
	//X86FeatureFXSR_OPT:    "fxsr_opt",
	//X86Feature3DNOWEXT:    "3dnowext",
	//X86Feature3DNOW:       "3dnow",
)

// linuxBlockOrder defines the order in which linux organizes the feature
// blocks. Linux also tracks feature bits in 32-bit blocks, but in an order
// which doesn't match well here, so for the /proc/cpuinfo generation we simply
// re-map the blocks to Linux's ordering and then go through the bits in each
// block.
var linuxBlockOrder = []block{1, 6, 0, 5, 2, 4}

// To make emulation of /proc/cpuinfo easy down the line, these names match the
// names of the basic features in Linux defined in
// arch/x86/kernel/cpu/capflags.c.
var x86FeatureStrings = map[Feature]string{
	// Block 0.
	X86FeatureSSE3:     "pni",
	X86FeaturePCLMULDQ: "pclmulqdq",
	X86FeatureDTES64:   "dtes64",
	X86FeatureMONITOR:  "monitor",
	X86FeatureDSCPL:    "ds_cpl",
	X86FeatureVMX:      "vmx",
	X86FeatureSMX:      "smx",
	X86FeatureEST:      "est",
	X86FeatureTM2:      "tm2",
	X86FeatureSSSE3:    "ssse3",
	X86FeatureCNXTID:   "cid",
	X86FeatureFMA:      "fma",
	X86FeatureCX16:     "cx16",
	X86FeatureXTPR:     "xtpr",
	X86FeaturePDCM:     "pdcm",
	X86FeaturePCID:     "pcid",
	X86FeatureDCA:      "dca",
	X86FeatureSSE4_1:   "sse4_1",
	X86FeatureSSE4_2:   "sse4_2",
	X86FeatureX2APIC:   "x2apic",
	X86FeatureMOVBE:    "movbe",
	X86FeaturePOPCNT:   "popcnt",
	X86FeatureTSCD:     "tsc_deadline_timer",
	X86FeatureAES:      "aes",
	X86FeatureXSAVE:    "xsave",
	X86FeatureAVX:      "avx",
	X86FeatureF16C:     "f16c",
	X86FeatureRDRAND:   "rdrand",

	// Block 1.
	X86FeatureFPU:   "fpu",
	X86FeatureVME:   "vme",
	X86FeatureDE:    "de",
	X86FeaturePSE:   "pse",
	X86FeatureTSC:   "tsc",
	X86FeatureMSR:   "msr",
	X86FeaturePAE:   "pae",
	X86FeatureMCE:   "mce",
	X86FeatureCX8:   "cx8",
	X86FeatureAPIC:  "apic",
	X86FeatureSEP:   "sep",
	X86FeatureMTRR:  "mtrr",
	X86FeaturePGE:   "pge",
	X86FeatureMCA:   "mca",
	X86FeatureCMOV:  "cmov",
	X86FeaturePAT:   "pat",
	X86FeaturePSE36: "pse36",
	X86FeaturePSN:   "pn",
	X86FeatureCLFSH: "clflush",
	X86FeatureDS:    "dts",
	X86FeatureACPI:  "acpi",
	X86FeatureMMX:   "mmx",
	X86FeatureFXSR:  "fxsr",
	X86FeatureSSE:   "sse",
	X86FeatureSSE2:  "sse2",
	X86FeatureSS:    "ss",
	X86FeatureHTT:   "ht",
	X86FeatureTM:    "tm",
	X86FeatureIA64:  "ia64",
	X86FeaturePBE:   "pbe",

	// Block 2.
	X86FeatureFSGSBase:   "fsgsbase",
	X86FeatureTSC_ADJUST: "tsc_adjust",
	X86FeatureBMI1:       "bmi1",
	X86FeatureHLE:        "hle",
	X86FeatureAVX2:       "avx2",
	X86FeatureSMEP:       "smep",
	X86FeatureBMI2:       "bmi2",
	X86FeatureERMS:       "erms",
	X86FeatureINVPCID:    "invpcid",
	X86FeatureRTM:        "rtm",
	X86FeatureCQM:        "cqm",
	X86FeatureMPX:        "mpx",
	X86FeatureRDT:        "rdt",
	X86FeatureAVX512F:    "avx512f",
	X86FeatureAVX512DQ:   "avx512dq",
	X86FeatureRDSEED:     "rdseed",
	X86FeatureADX:        "adx",
	X86FeatureSMAP:       "smap",
	X86FeatureCLWB:       "clwb",
	X86FeatureAVX512PF:   "avx512pf",
	X86FeatureAVX512ER:   "avx512er",
	X86FeatureAVX512CD:   "avx512cd",
	X86FeatureSHA:        "sha_ni",
	X86FeatureAVX512BW:   "avx512bw",
	X86FeatureAVX512VL:   "avx512vl",

	// Block 4.
	X86FeatureXSAVEOPT: "xsaveopt",
	X86FeatureXSAVEC:   "xsavec",
	X86FeatureXGETBV1:  "xgetbv1",

	// Block 5.
	X86FeatureLAHF64:    "lahf_lm", // LAHF/SAHF in long mode
	X86FeatureLZCNT:     "abm",     // Advanced bit manipulation
	X86FeaturePREFETCHW: "3dnowprefetch",

	// Block 6.
	X86FeatureSYSCALL: "syscall",
	X86FeatureNX:      "nx",
	X86FeatureGBPAGES: "pdpe1gb",
	X86FeatureRDTSCP:  "rdtscp",
	X86FeatureLM:      "lm",
}

// These flags are parse only---they can be used for setting / unsetting the
// flags, but will not get printed out in /proc/cpuinfo.
var x86FeatureParseOnlyStrings = map[Feature]string{
	// Block 0.
	X86FeatureSDBG:    "sdbg",
	X86FeatureOSXSAVE: "osxsave",

	// Block 2.
	X86FeatureFDP_EXCPTN_ONLY: "fdp_excptn_only",
	X86FeatureFPCSDS:          "fpcsds",
	X86FeatureIPT:             "pt",
	X86FeatureCLFLUSHOPT:      "clfushopt",

	// Block 3.
	X86FeaturePREFETCHWT1: "prefetchwt1",
	X86FeatureAVX512VBMI:  "avx512vbmi",
	X86FeatureUMIP:        "umip",
	X86FeaturePKU:         "pku",

	// Block 4.
	X86FeatureXSAVES: "xsaves",
}

// These are the default values of various FeatureSet fields.
const (
	defaultVendorID = "GenuineIntel"

	// These processor signature defaults are derived from the values
	// listed in Intel AN485 for i7/Xeon processors.
	defaultExtFamily  uint8 = 0
	defaultExtModel   uint8 = 1
	defaultType       uint8 = 0
	defaultFamily     uint8 = 0x06
	defaultModel      uint8 = 0x0a
	defaultSteppingID uint8 = 0
)

// Just a way to wrap cpuid function numbers.
type cpuidFunction uint32

// The constants below are the lower or "standard" cpuid functions. See Intel
// AN485 for detailed information about each one.
const (
	vendorID                 cpuidFunction = iota // Returns vendor ID and largest standard function.
	featureInfo                                   // Returns basic feature bits and processor signature.
	cacheDescriptors                              // Returns list of cache descriptors.
	serialNumber                                  // Returns processor serial number (obsolete on new hardware).
	deterministicCacheParams                      // Returns deterministic cache information. See AN485.
	monitorMwaitParams                            // Returns information about monitor/mwait instructions.
	powerParams                                   // Returns information about power management and thermal sensors.
	extendedFeatureInfo                           // Returns extended feature bits.
	_                                             // Function 8 is reserved.
	DCAParams                                     // Returns direct cache access information.
	pmcInfo                                       // Returns information about performance monitoring features.
	x2APICInfo                                    // Returns core/logical processor topology. See AN485 for details.
	_                                             // Function 0xc is reserved.
	xSaveInfo                                     // Returns information about extended state management.
)

// The "extended" functions start at 0x80000000. Intel AP-485 has information
// on these as well.
const (
	extendedFunctionInfo cpuidFunction = 0x80000000 + iota // Returns highest available extended function in eax.
	extendedFeatures                                       // Returns some extended feature bits in edx and ecx.
)

var cpuFreqMHz float64

// x86FeaturesFromString includes features from x86FeatureStrings and
// x86FeatureParseOnlyStrings.
var x86FeaturesFromString = make(map[string]Feature)

// FeatureFromString returns the Feature associated with the given feature
// string plus a bool to indicate if it could find the feature.
func FeatureFromString(s string) (Feature, bool) {
	f, b := x86FeaturesFromString[s]
	return f, b
}

// String implements fmt.Stringer.
func (f Feature) String() string {
	if s := f.flagString(false); s != "" {
		return s
	}
	return fmt.Sprintf("<cpuflag %d>", f)
}

func (f Feature) flagString(cpuinfoOnly bool) string {
	if s, ok := x86FeatureStrings[f]; ok {
		return s
	}
	if !cpuinfoOnly {
		return x86FeatureParseOnlyStrings[f]
	}
	return ""
}

// FeatureSet is a set of Features for a cpu.
//
// +stateify savable
type FeatureSet struct {
	// Set is the set of features that are enabled in this FeatureSet.
	Set map[Feature]bool

	// VendorID is the 12-char string returned in ebx:edx:ecx for eax=0.
	VendorID string

	// ExtendedFamily is part of the processor signature.
	ExtendedFamily uint8

	// ExtendedModel is part of the processor signature.
	ExtendedModel uint8

	// ProcessorType is part of the processor signature.
	ProcessorType uint8

	// Family is part of the processor signature.
	Family uint8

	// Model is part of the processor signature.
	Model uint8

	// SteppingID is part of the processor signature.
	SteppingID uint8
}

// FlagsString prints out supported CPU flags. If cpuinfoOnly is true, it is
// equivalent to the "flags" field in /proc/cpuinfo.
func (fs *FeatureSet) FlagsString(cpuinfoOnly bool) string {
	var s []string
	for _, b := range linuxBlockOrder {
		for i := 0; i < blockSize; i++ {
			if f := featureID(b, i); fs.Set[f] {
				if fstr := f.flagString(cpuinfoOnly); fstr != "" {
					s = append(s, fstr)
				}
			}
		}
	}
	return strings.Join(s, " ")
}

// CPUInfo is to generate a section of one cpu in /proc/cpuinfo. This is a
// minimal /proc/cpuinfo, it is missing some fields like "microcode" that are
// not always printed in Linux. The bogomips field is simply made up.
func (fs FeatureSet) CPUInfo(cpu uint) string {
	var b bytes.Buffer
	fmt.Fprintf(&b, "processor\t: %d\n", cpu)
	fmt.Fprintf(&b, "vendor_id\t: %s\n", fs.VendorID)
	fmt.Fprintf(&b, "cpu family\t: %d\n", ((fs.ExtendedFamily<<4)&0xff)|fs.Family)
	fmt.Fprintf(&b, "model\t\t: %d\n", ((fs.ExtendedModel<<4)&0xff)|fs.Model)
	fmt.Fprintf(&b, "model name\t: %s\n", "unknown") // Unknown for now.
	fmt.Fprintf(&b, "stepping\t: %s\n", "unknown")   // Unknown for now.
	fmt.Fprintf(&b, "cpu MHz\t\t: %.3f\n", cpuFreqMHz)
	fmt.Fprintln(&b, "fpu\t\t: yes")
	fmt.Fprintln(&b, "fpu_exception\t: yes")
	fmt.Fprintf(&b, "cpuid level\t: %d\n", uint32(xSaveInfo)) // Same as ax in vendorID.
	fmt.Fprintln(&b, "wp\t\t: yes")
	fmt.Fprintf(&b, "flags\t\t: %s\n", fs.FlagsString(true))
	fmt.Fprintf(&b, "bogomips\t: %.02f\n", cpuFreqMHz) // It's bogus anyway.
	fmt.Fprintf(&b, "clflush size\t: %d\n", 64)
	fmt.Fprintf(&b, "cache_alignment\t: %d\n", 64)
	fmt.Fprintf(&b, "address sizes\t: %d bits physical, %d bits virtual\n", 46, 48)
	fmt.Fprintln(&b, "power management:") // This is always here, but can be blank.
	fmt.Fprintln(&b, "")                  // The /proc/cpuinfo file ends with an extra newline.
	return b.String()
}

// Helper to convert 3 regs into 12-byte vendor ID.
func vendorIDFromRegs(bx, cx, dx uint32) string {
	bytes := make([]byte, 0, 12)
	for i := uint(0); i < 4; i++ {
		b := byte(bx >> (i * 8))
		bytes = append(bytes, b)
	}

	for i := uint(0); i < 4; i++ {
		b := byte(dx >> (i * 8))
		bytes = append(bytes, b)
	}

	for i := uint(0); i < 4; i++ {
		b := byte(cx >> (i * 8))
		bytes = append(bytes, b)
	}
	return string(bytes)
}

// ExtendedStateSize returns the number of bytes needed to save the "extended
// state" for this processor and the boundary it must be aligned to. Extended
// state includes floating point registers, and other cpu state that's not
// associated with the normal task context.
//
// Note: We can save some space here with an optimiazation where we use a
// smaller chunk of memory depending on features that are actually enabled.
// Currently we just use the largest possible size for simplicity (which is
// about 2.5K worst case, with avx512).
func (fs *FeatureSet) ExtendedStateSize() (size, align uint) {
	if fs.UseXsave() {
		// Leaf 0 of xsaveinfo function returns the size for currently
		// enabled xsave features in ebx, the maximum size if all valid
		// features are saved with xsave in ecx, and valid XCR0 bits in
		// edx:eax.
		_, _, maxSize, _ := HostID(uint32(xSaveInfo), 0)
		return uint(maxSize), 64
	}

	// If we don't support xsave, we fall back to fxsave, which requires
	// 512 bytes aligned to 16 bytes.
	return 512, 16
}

// ValidXCR0Mask returns the bits that may be set to 1 in control register
// XCR0.
func (fs *FeatureSet) ValidXCR0Mask() uint64 {
	if !fs.UseXsave() {
		return 0
	}
	eax, _, _, edx := HostID(uint32(xSaveInfo), 0)
	return uint64(edx)<<32 | uint64(eax)
}

// vendorIDRegs returns the 3 register values used to construct the 12-byte
// vendor ID string for eax=0.
func (fs *FeatureSet) vendorIDRegs() (bx, dx, cx uint32) {
	for i := uint(0); i < 4; i++ {
		bx |= uint32(fs.VendorID[i]) << (i * 8)
	}

	for i := uint(0); i < 4; i++ {
		dx |= uint32(fs.VendorID[i+4]) << (i * 8)
	}

	for i := uint(0); i < 4; i++ {
		cx |= uint32(fs.VendorID[i+8]) << (i * 8)
	}
	return
}

// signature returns the signature dword that's returned in eax when eax=1.
func (fs *FeatureSet) signature() uint32 {
	var s uint32
	s |= uint32(fs.SteppingID & 0xf)
	s |= uint32(fs.Model&0xf) << 4
	s |= uint32(fs.Family&0xf) << 8
	s |= uint32(fs.ProcessorType&0x3) << 12
	s |= uint32(fs.ExtendedModel&0xf) << 16
	s |= uint32(fs.ExtendedFamily&0xff) << 20
	return s
}

// Helper to deconstruct signature dword.
func signatureSplit(v uint32) (ef, em, pt, f, m, sid uint8) {
	sid = uint8(v & 0xf)
	m = uint8(v>>4) & 0xf
	f = uint8(v>>8) & 0xf
	pt = uint8(v>>12) & 0x3
	em = uint8(v>>16) & 0xf
	ef = uint8(v >> 20)
	return
}

// This factory function is only needed inside the package, package users
// should not be creating and using empty feature sets.
func newEmptyFeatureSet() *FeatureSet {
	return newFeatureSet(make(map[Feature]bool))
}

// newFeatureSet creates a new FeatureSet with sensible default values and the
// provided set of features.
func newFeatureSet(s map[Feature]bool) *FeatureSet {
	return &FeatureSet{
		Set:            s,
		VendorID:       defaultVendorID,
		ExtendedFamily: defaultExtFamily,
		ExtendedModel:  defaultExtModel,
		ProcessorType:  defaultType,
		Family:         defaultFamily,
		Model:          defaultModel,
		SteppingID:     defaultSteppingID,
	}
}

// Helper to convert blockwise feature bit masks into a set of features. Masks
// must be provided in order for each block, without skipping them. If a block
// does not matter for this feature set, 0 is specified.
func setFromBlockMasks(blocks ...uint32) map[Feature]bool {
	s := make(map[Feature]bool)
	for b, blockMask := range blocks {
		for i := 0; i < blockSize; i++ {
			if blockMask&1 != 0 {
				s[featureID(block(b), i)] = true
			}
			blockMask >>= 1
		}
	}
	return s
}

// blockMask returns the 32-bit mask associated with a block of features.
func (fs *FeatureSet) blockMask(b block) uint32 {
	var mask uint32
	for i := 0; i < blockSize; i++ {
		if fs.Set[featureID(b, i)] {
			mask |= 1 << uint(i)
		}
	}
	return mask
}

// Remove removes a Feature from a FeatureSet. It ignores features
// that are not in the FeatureSet.
func (fs *FeatureSet) Remove(feature Feature) {
	delete(fs.Set, feature)
}

// Add adds a Feature to a FeatureSet. It ignores duplicate features.
func (fs *FeatureSet) Add(feature Feature) {
	fs.Set[feature] = true
}

// HasFeature tests whether or not a feature is in the given feature set.
func (fs *FeatureSet) HasFeature(feature Feature) bool {
	return fs.Set[feature]
}

// IsSubset returns true if the FeatureSet is a subset of the FeatureSet passed in.
// This is useful if you want to see if a FeatureSet is compatible with another
// FeatureSet, since you can only run with a given FeatureSet if it's a subset of
// the host's.
func (fs *FeatureSet) IsSubset(other *FeatureSet) bool {
	return fs.Subtract(other) == nil
}

// Subtract returns the features present in fs that are not present in other.
// If all features in fs are present in other, Subtract returns nil.
func (fs *FeatureSet) Subtract(other *FeatureSet) (diff map[Feature]bool) {
	for f := range fs.Set {
		if !other.Set[f] {
			if diff == nil {
				diff = make(map[Feature]bool)
			}
			diff[f] = true
		}
	}

	return
}

// TakeFeatureIntersection will set the features in `fs` to the intersection of
// the features in `fs` and `other` (effectively clearing any feature bits on
// `fs` that are not also set in `other`).
func (fs *FeatureSet) TakeFeatureIntersection(other *FeatureSet) {
	for f := range fs.Set {
		if !other.Set[f] {
			delete(fs.Set, f)
		}
	}
}

// EmulateID emulates a cpuid instruction based on the feature set.
func (fs *FeatureSet) EmulateID(origAx, origCx uint32) (ax, bx, cx, dx uint32) {
	switch cpuidFunction(origAx) {
	case vendorID:
		ax = uint32(xSaveInfo) // 0xd (xSaveInfo) is the highest function we support.
		bx, dx, cx = fs.vendorIDRegs()
	case featureInfo:
		// clflush line size (ebx bits[15:8]) hardcoded as 8. This
		// means cache lines of size 64 bytes.
		bx = 8 << 8
		cx = fs.blockMask(block(0))
		dx = fs.blockMask(block(1))
		ax = fs.signature()
	case xSaveInfo:
		if !fs.UseXsave() {
			return 0, 0, 0, 0
		}
		return HostID(uint32(xSaveInfo), origCx)
	case extendedFeatureInfo:
		if origCx != 0 {
			break // Only leaf 0 is supported.
		}
		bx = fs.blockMask(block(2))
		cx = fs.blockMask(block(3))
	case extendedFunctionInfo:
		// We only support showing the extended features.
		ax = uint32(extendedFeatures)
		cx = 0
	case extendedFeatures:
		cx = fs.blockMask(block(5))
		dx = fs.blockMask(block(6))
	}

	return
}

// UseXsave returns the choice of fp state saving instruction.
func (fs *FeatureSet) UseXsave() bool {
	return fs.HasFeature(X86FeatureXSAVE) && fs.HasFeature(X86FeatureOSXSAVE)
}

// UseXsaveopt returns true if 'fs' supports the "xsaveopt" instruction.
func (fs *FeatureSet) UseXsaveopt() bool {
	return fs.UseXsave() && fs.HasFeature(X86FeatureXSAVEOPT)
}

// HostID executes a native CPUID instruction.
func HostID(axArg, cxArg uint32) (ax, bx, cx, dx uint32)

// HostFeatureSet uses cpuid to get host values and construct a feature set
// that matches that of the host machine. Note that there are several places
// where there appear to be some unnecessary assignments between register names
// (ax, bx, cx, or dx) and featureBlockN variables. This is to explicitly show
// where the different feature blocks come from, to make the code easier to
// inspect and read.
func HostFeatureSet() *FeatureSet {
	// eax=0 gets max supported feature and vendor ID.
	_, bx, cx, dx := HostID(0, 0)
	vendorID := vendorIDFromRegs(bx, cx, dx)

	// eax=1 gets basic features in ecx:edx.
	ax, _, cx, dx := HostID(1, 0)
	featureBlock0 := cx
	featureBlock1 := dx
	ef, em, pt, f, m, sid := signatureSplit(ax)

	// eax=7, ecx=0 gets extended features in ecx:ebx.
	_, bx, cx, _ = HostID(7, 0)
	featureBlock2 := bx
	featureBlock3 := cx

	// Leaf 0xd is supported only if CPUID.1:ECX.XSAVE[bit 26] is set.
	var featureBlock4 uint32
	if (featureBlock0 & (1 << 26)) != 0 {
		featureBlock4, _, _, _ = HostID(uint32(xSaveInfo), 1)
	}

	// eax=0x80000000 gets supported extended levels. We use this to
	// determine if there are any non-zero block 4 or block 6 bits to find.
	var featureBlock5, featureBlock6 uint32
	if ax, _, _, _ := HostID(uint32(extendedFunctionInfo), 0); ax >= uint32(extendedFeatures) {
		// eax=0x80000001 gets AMD added feature bits.
		_, _, cx, dx = HostID(uint32(extendedFeatures), 0)
		featureBlock5 = cx
		featureBlock6 = dx
	}

	set := setFromBlockMasks(featureBlock0, featureBlock1, featureBlock2, featureBlock3, featureBlock4, featureBlock5, featureBlock6)
	return &FeatureSet{
		Set:            set,
		VendorID:       vendorID,
		ExtendedFamily: ef,
		ExtendedModel:  em,
		ProcessorType:  pt,
		Family:         f,
		Model:          m,
		SteppingID:     sid,
	}
}

// Reads max cpu frequency from host /proc/cpuinfo. Must run before
// whitelisting. This value is used to create the fake /proc/cpuinfo from a
// FeatureSet.
func initCPUFreq() {
	cpuinfob, err := ioutil.ReadFile("/proc/cpuinfo")
	if err != nil {
		// Leave it as 0... The standalone VDSO bails out in the same
		// way.
		log.Warningf("Could not read /proc/cpuinfo: %v", err)
		return
	}
	cpuinfo := string(cpuinfob)

	// We get the value straight from host /proc/cpuinfo. On machines with
	// frequency scaling enabled, this will only get the current value
	// which will likely be innacurate. This is fine on machines with
	// frequency scaling disabled.
	for _, line := range strings.Split(cpuinfo, "\n") {
		if strings.Contains(line, "cpu MHz") {
			splitMHz := strings.Split(line, ":")
			if len(splitMHz) < 2 {
				log.Warningf("Could not read /proc/cpuinfo: malformed cpu MHz line")
				return
			}

			// If there was a problem, leave cpuFreqMHz as 0.
			var err error
			cpuFreqMHz, err = strconv.ParseFloat(strings.TrimSpace(splitMHz[1]), 64)
			if err != nil {
				log.Warningf("Could not parse cpu MHz value %v: %v", splitMHz[1], err)
				cpuFreqMHz = 0
				return
			}
			return
		}
	}
	log.Warningf("Could not parse /proc/cpuinfo, it is empty or does not contain cpu MHz")
}

func initFeaturesFromString() {
	for f, s := range x86FeatureStrings {
		x86FeaturesFromString[s] = f
	}
	for f, s := range x86FeatureParseOnlyStrings {
		x86FeaturesFromString[s] = f
	}
}

func init() {
	// initCpuFreq must be run before whitelists are enabled.
	initCPUFreq()
	initFeaturesFromString()
}