summaryrefslogtreecommitdiffhomepage
path: root/pkg/coverage/coverage.go
blob: 6f3d72e83dc8652e11500d74ac62a9e47395ce01 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Package coverage provides an interface through which Go coverage data can
// be collected, converted to kcov format, and exposed to userspace.
//
// Coverage can be enabled by calling bazel {build,test} with
// --collect_coverage_data and --instrumentation_filter with the desired
// coverage surface. This causes bazel to use the Go cover tool manually to
// generate instrumented files. It injects a hook that registers all coverage
// data with the coverdata package.
package coverage

import (
	"fmt"
	"io"
	"sort"
	"testing"

	"gvisor.dev/gvisor/pkg/sync"
	"gvisor.dev/gvisor/pkg/usermem"

	"github.com/bazelbuild/rules_go/go/tools/coverdata"
)

// coverageMu must be held while accessing coverdata.Cover. This prevents
// concurrent reads/writes from multiple threads collecting coverage data.
var coverageMu sync.RWMutex

// once ensures that globalData is only initialized once.
var once sync.Once

// blockBitLength is the number of bits used to represent coverage block index
// in a synthetic PC (the rest are used to represent the file index). Even
// though a PC has 64 bits, we only use the lower 32 bits because some users
// (e.g., syzkaller) may truncate that address to a 32-bit value.
//
// As of this writing, there are ~1200 files that can be instrumented and at
// most ~1200 blocks per file, so 16 bits is more than enough to represent every
// file and every block.
const blockBitLength = 16

// KcovAvailable returns whether the kcov coverage interface is available. It is
// available as long as coverage is enabled for some files.
func KcovAvailable() bool {
	return len(coverdata.Cover.Blocks) > 0
}

var globalData struct {
	// files is the set of covered files sorted by filename. It is calculated at
	// startup.
	files []string

	// syntheticPCs are a set of PCs calculated at startup, where the PC
	// at syntheticPCs[i][j] corresponds to file i, block j.
	syntheticPCs [][]uint64
}

// ClearCoverageData clears existing coverage data.
//
//go:norace
func ClearCoverageData() {
	coverageMu.Lock()
	defer coverageMu.Unlock()

	// We do not use atomic operations while reading/writing to the counters,
	// which would drastically degrade performance. Slight discrepancies due to
	// racing is okay for the purposes of kcov.
	for _, counters := range coverdata.Cover.Counters {
		for index := 0; index < len(counters); index++ {
			counters[index] = 0
		}
	}
}

var coveragePool = sync.Pool{
	New: func() interface{} {
		return make([]byte, 0)
	},
}

// ConsumeCoverageData builds and writes the collection of covered PCs. It
// returns the number of bytes written.
//
// In Linux, a kernel configuration is set that compiles the kernel with a
// custom function that is called at the beginning of every basic block, which
// updates the memory-mapped coverage information. The Go coverage tool does not
// allow us to inject arbitrary instructions into basic blocks, but it does
// provide data that we can convert to a kcov-like format and transfer them to
// userspace through a memory mapping.
//
// Note that this is not a strict implementation of kcov, which is especially
// tricky to do because we do not have the same coverage tools available in Go
// that that are available for the actual Linux kernel. In Linux, a kernel
// configuration is set that compiles the kernel with a custom function that is
// called at the beginning of every basic block to write program counters to the
// kcov memory mapping. In Go, however, coverage tools only give us a count of
// basic blocks as they are executed. Every time we return to userspace, we
// collect the coverage information and write out PCs for each block that was
// executed, providing userspace with the illusion that the kcov data is always
// up to date. For convenience, we also generate a unique synthetic PC for each
// block instead of using actual PCs. Finally, we do not provide thread-specific
// coverage data (each kcov instance only contains PCs executed by the thread
// owning it); instead, we will supply data for any file specified by --
// instrumentation_filter.
//
// Note that we "consume", i.e. clear, coverdata when this function is run, to
// ensure that each event is only reported once. Due to the limitations of Go
// coverage tools, we reset the global coverage data every time this function is
// run.
//
//go:norace
func ConsumeCoverageData(w io.Writer) int {
	InitCoverageData()

	coverageMu.Lock()
	defer coverageMu.Unlock()

	total := 0
	var pcBuffer [8]byte
	for fileNum, file := range globalData.files {
		counters := coverdata.Cover.Counters[file]
		for index := 0; index < len(counters); index++ {
			// We do not use atomic operations while reading/writing to the counters,
			// which would drastically degrade performance. Slight discrepancies due to
			// racing is okay for the purposes of kcov.
			if counters[index] == 0 {
				continue
			}
			// Non-zero coverage data found; consume it and report as a PC.
			counters[index] = 0
			pc := globalData.syntheticPCs[fileNum][index]
			usermem.ByteOrder.PutUint64(pcBuffer[:], pc)
			n, err := w.Write(pcBuffer[:])
			if err != nil {
				if err == io.EOF {
					// Simply stop writing if we encounter EOF; it's ok if we attempted to
					// write more than we can hold.
					return total + n
				}
				panic(fmt.Sprintf("Internal error writing PCs to kcov area: %v", err))
			}
			total += n
		}
	}

	if total == 0 {
		// An empty profile indicates that coverage is not enabled, in which case
		// there shouldn't be any task work registered.
		panic("kcov task work is registered, but no coverage data was found")
	}
	return total
}

// InitCoverageData initializes globalData. It should be called before any kcov
// data is written.
func InitCoverageData() {
	once.Do(func() {
		// First, order all files. Then calculate synthetic PCs for every block
		// (using the well-defined ordering for files as well).
		for file := range coverdata.Cover.Blocks {
			globalData.files = append(globalData.files, file)
		}
		sort.Strings(globalData.files)

		for fileNum, file := range globalData.files {
			blocks := coverdata.Cover.Blocks[file]
			pcs := make([]uint64, 0, len(blocks))
			for blockNum := range blocks {
				pcs = append(pcs, calculateSyntheticPC(fileNum, blockNum))
			}
			globalData.syntheticPCs = append(globalData.syntheticPCs, pcs)
		}
	})
}

// Symbolize prints information about the block corresponding to pc.
func Symbolize(out io.Writer, pc uint64) error {
	fileNum, blockNum := syntheticPCToIndexes(pc)
	file, err := fileFromIndex(fileNum)
	if err != nil {
		return err
	}
	block, err := blockFromIndex(file, blockNum)
	if err != nil {
		return err
	}
	writeBlock(out, pc, file, block)
	return nil
}

// WriteAllBlocks prints all information about all blocks along with their
// corresponding synthetic PCs.
func WriteAllBlocks(out io.Writer) {
	for fileNum, file := range globalData.files {
		for blockNum, block := range coverdata.Cover.Blocks[file] {
			writeBlock(out, calculateSyntheticPC(fileNum, blockNum), file, block)
		}
	}
}

func calculateSyntheticPC(fileNum int, blockNum int) uint64 {
	return (uint64(fileNum) << blockBitLength) + uint64(blockNum)
}

func syntheticPCToIndexes(pc uint64) (fileNum int, blockNum int) {
	return int(pc >> blockBitLength), int(pc & ((1 << blockBitLength) - 1))
}

// fileFromIndex returns the name of the file in the sorted list of instrumented files.
func fileFromIndex(i int) (string, error) {
	total := len(globalData.files)
	if i < 0 || i >= total {
		return "", fmt.Errorf("file index out of range: [%d] with length %d", i, total)
	}
	return globalData.files[i], nil
}

// blockFromIndex returns the i-th block in the given file.
func blockFromIndex(file string, i int) (testing.CoverBlock, error) {
	blocks, ok := coverdata.Cover.Blocks[file]
	if !ok {
		return testing.CoverBlock{}, fmt.Errorf("instrumented file %s does not exist", file)
	}
	total := len(blocks)
	if i < 0 || i >= total {
		return testing.CoverBlock{}, fmt.Errorf("block index out of range: [%d] with length %d", i, total)
	}
	return blocks[i], nil
}

func writeBlock(out io.Writer, pc uint64, file string, block testing.CoverBlock) {
	io.WriteString(out, fmt.Sprintf("%#x\n", pc))
	io.WriteString(out, fmt.Sprintf("%s:%d.%d,%d.%d\n", file, block.Line0, block.Col0, block.Line1, block.Col1))
}