summaryrefslogtreecommitdiffhomepage
path: root/pkg/compressio/compressio.go
blob: 2055368123016117d465c1868b5a03cd96cf5fe4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
// Copyright 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Package compressio provides parallel compression and decompression, as well
// as optional SHA-256 hashing.
//
// The stream format is defined as follows.
//
// /------------------------------------------------------\
// |                 chunk size (4-bytes)                 |
// +------------------------------------------------------+
// |              (optional) hash (32-bytes)              |
// +------------------------------------------------------+
// |           compressed data size (4-bytes)             |
// +------------------------------------------------------+
// |                   compressed data                    |
// +------------------------------------------------------+
// |              (optional) hash (32-bytes)              |
// +------------------------------------------------------+
// |           compressed data size (4-bytes)             |
// +------------------------------------------------------+
// |                       ......                         |
// \------------------------------------------------------/
//
// where each subsequent hash is calculated from the following items in order
//
//     compressed data
//     compressed data size
//     previous hash
//
// so the stream integrity cannot be compromised by switching and mixing
// compressed chunks.
package compressio

import (
	"bytes"
	"compress/flate"
	"errors"
	"hash"
	"io"
	"runtime"
	"sync"

	"crypto/hmac"
	"crypto/sha256"
	"gvisor.googlesource.com/gvisor/pkg/binary"
)

var bufPool = sync.Pool{
	New: func() interface{} {
		return bytes.NewBuffer(nil)
	},
}

var chunkPool = sync.Pool{
	New: func() interface{} {
		return new(chunk)
	},
}

// chunk is a unit of work.
type chunk struct {
	// compressed is compressed data.
	//
	// This will always be returned to the bufPool directly when work has
	// finished (in schedule) and therefore must be allocated.
	compressed *bytes.Buffer

	// uncompressed is the uncompressed data.
	//
	// This is not returned to the bufPool automatically, since it may
	// correspond to a inline slice (provided directly to Read or Write).
	uncompressed *bytes.Buffer

	// The current hash object. Only used in compress mode.
	h hash.Hash

	// The hash from previous chunks. Only used in uncompress mode.
	lastSum []byte

	// The expected hash after current chunk. Only used in uncompress mode.
	sum []byte
}

// newChunk allocates a new chunk object (or pulls one from the pool). Buffers
// will be allocated if nil is provided for compressed or uncompressed.
func newChunk(lastSum []byte, sum []byte, compressed *bytes.Buffer, uncompressed *bytes.Buffer) *chunk {
	c := chunkPool.Get().(*chunk)
	c.lastSum = lastSum
	c.sum = sum
	if compressed != nil {
		c.compressed = compressed
	} else {
		c.compressed = bufPool.Get().(*bytes.Buffer)
	}
	if uncompressed != nil {
		c.uncompressed = uncompressed
	} else {
		c.uncompressed = bufPool.Get().(*bytes.Buffer)
	}
	return c
}

// result is the result of some work; it includes the original chunk.
type result struct {
	*chunk
	err error
}

// worker is a compression/decompression worker.
//
// The associated worker goroutine reads in uncompressed buffers from input and
// writes compressed buffers to its output. Alternatively, the worker reads
// compressed buffers from input and writes uncompressed buffers to its output.
//
// The goroutine will exit when input is closed, and the goroutine will close
// output.
type worker struct {
	hashPool *hashPool
	input    chan *chunk
	output   chan result
}

// work is the main work routine; see worker.
func (w *worker) work(compress bool, level int) {
	defer close(w.output)

	var h hash.Hash

	for c := range w.input {
		if h == nil && w.hashPool != nil {
			h = w.hashPool.getHash()
		}
		if compress {
			mw := io.Writer(c.compressed)
			if h != nil {
				mw = io.MultiWriter(mw, h)
			}

			// Encode this slice.
			fw, err := flate.NewWriter(mw, level)
			if err != nil {
				w.output <- result{c, err}
				continue
			}

			// Encode the input.
			if _, err := io.CopyN(fw, c.uncompressed, int64(c.uncompressed.Len())); err != nil {
				w.output <- result{c, err}
				continue
			}
			if err := fw.Close(); err != nil {
				w.output <- result{c, err}
				continue
			}

			// Write the hash, if enabled.
			if h != nil {
				binary.WriteUint32(h, binary.BigEndian, uint32(c.compressed.Len()))
				c.h = h
				h = nil
			}
		} else {
			// Check the hash of the compressed contents.
			if h != nil {
				h.Write(c.compressed.Bytes())
				binary.WriteUint32(h, binary.BigEndian, uint32(c.compressed.Len()))
				io.CopyN(h, bytes.NewReader(c.lastSum), int64(len(c.lastSum)))

				sum := h.Sum(nil)
				h.Reset()
				if !hmac.Equal(c.sum, sum) {
					w.output <- result{c, ErrHashMismatch}
					continue
				}
			}

			// Decode this slice.
			fr := flate.NewReader(c.compressed)

			// Decode the input.
			if _, err := io.Copy(c.uncompressed, fr); err != nil {
				w.output <- result{c, err}
				continue
			}
		}

		// Send the output.
		w.output <- result{c, nil}
	}
}

type hashPool struct {
	// mu protexts the hash list.
	mu sync.Mutex

	// key is the key used to create hash objects.
	key []byte

	// hashes is the hash object free list. Note that this cannot be
	// globally shared across readers or writers, as it is key-specific.
	hashes []hash.Hash
}

// getHash gets a hash object for the pool. It should only be called when the
// pool key is non-nil.
func (p *hashPool) getHash() hash.Hash {
	p.mu.Lock()
	defer p.mu.Unlock()

	if len(p.hashes) == 0 {
		return hmac.New(sha256.New, p.key)
	}

	h := p.hashes[len(p.hashes)-1]
	p.hashes = p.hashes[:len(p.hashes)-1]
	return h
}

func (p *hashPool) putHash(h hash.Hash) {
	h.Reset()

	p.mu.Lock()
	defer p.mu.Unlock()

	p.hashes = append(p.hashes, h)
}

// pool is common functionality for reader/writers.
type pool struct {
	// workers are the compression/decompression workers.
	workers []worker

	// chunkSize is the chunk size. This is the first four bytes in the
	// stream and is shared across both the reader and writer.
	chunkSize uint32

	// mu protects below; it is generally the responsibility of users to
	// acquire this mutex before calling any methods on the pool.
	mu sync.Mutex

	// nextInput is the next worker for input (scheduling).
	nextInput int

	// nextOutput is the next worker for output (result).
	nextOutput int

	// buf is the current active buffer; the exact semantics of this buffer
	// depending on whether this is a reader or a writer.
	buf *bytes.Buffer

	// lasSum records the hash of the last chunk processed.
	lastSum []byte

	// hashPool is the hash object pool. It cannot be embedded into pool
	// itself as worker refers to it and that would stop pool from being
	// GCed.
	hashPool *hashPool
}

// init initializes the worker pool.
//
// This should only be called once.
func (p *pool) init(key []byte, workers int, compress bool, level int) {
	if key != nil {
		p.hashPool = &hashPool{key: key}
	}
	p.workers = make([]worker, workers)
	for i := 0; i < len(p.workers); i++ {
		p.workers[i] = worker{
			hashPool: p.hashPool,
			input:    make(chan *chunk, 1),
			output:   make(chan result, 1),
		}
		go p.workers[i].work(compress, level) // S/R-SAFE: In save path only.
	}
	runtime.SetFinalizer(p, (*pool).stop)
}

// stop stops all workers.
func (p *pool) stop() {
	for i := 0; i < len(p.workers); i++ {
		close(p.workers[i].input)
	}
	p.workers = nil
	p.hashPool = nil
}

// handleResult calls the callback.
func handleResult(r result, callback func(*chunk) error) error {
	defer func() {
		r.chunk.compressed.Reset()
		bufPool.Put(r.chunk.compressed)
		chunkPool.Put(r.chunk)
	}()
	if r.err != nil {
		return r.err
	}
	return callback(r.chunk)
}

// schedule schedules the given buffers.
//
// If c is non-nil, then it will return as soon as the chunk is scheduled. If c
// is nil, then it will return only when no more work is left to do.
//
// If no callback function is provided, then the output channel will be
// ignored.  You must be sure that the input is schedulable in this case.
func (p *pool) schedule(c *chunk, callback func(*chunk) error) error {
	for {
		var (
			inputChan  chan *chunk
			outputChan chan result
		)
		if c != nil && len(p.workers) != 0 {
			inputChan = p.workers[(p.nextInput+1)%len(p.workers)].input
		}
		if callback != nil && p.nextOutput != p.nextInput && len(p.workers) != 0 {
			outputChan = p.workers[(p.nextOutput+1)%len(p.workers)].output
		}
		if inputChan == nil && outputChan == nil {
			return nil
		}

		select {
		case inputChan <- c:
			p.nextInput++
			return nil
		case r := <-outputChan:
			p.nextOutput++
			if err := handleResult(r, callback); err != nil {
				return err
			}
		}
	}
}

// reader chunks reads and decompresses.
type reader struct {
	pool

	// in is the source.
	in io.Reader
}

// NewReader returns a new compressed reader. If key is non-nil, the data stream
// is assumed to contain expected hash values, which will be compared against
// hash values computed from the compressed bytes. See package comments for
// details.
func NewReader(in io.Reader, key []byte) (io.Reader, error) {
	r := &reader{
		in: in,
	}

	// Use double buffering for read.
	r.init(key, 2*runtime.GOMAXPROCS(0), false, 0)

	var err error
	if r.chunkSize, err = binary.ReadUint32(in, binary.BigEndian); err != nil {
		return nil, err
	}

	if r.hashPool != nil {
		h := r.hashPool.getHash()
		binary.WriteUint32(h, binary.BigEndian, r.chunkSize)
		r.lastSum = h.Sum(nil)
		r.hashPool.putHash(h)
		sum := make([]byte, len(r.lastSum))
		if _, err := io.ReadFull(r.in, sum); err != nil {
			return nil, err
		}
		if !hmac.Equal(r.lastSum, sum) {
			return nil, ErrHashMismatch
		}
	}

	return r, nil
}

// errNewBuffer is returned when a new buffer is completed.
var errNewBuffer = errors.New("buffer ready")

// ErrHashMismatch is returned if the hash does not match.
var ErrHashMismatch = errors.New("hash mismatch")

// Read implements io.Reader.Read.
func (r *reader) Read(p []byte) (int, error) {
	r.mu.Lock()
	defer r.mu.Unlock()

	// Total bytes completed; this is declared up front because it must be
	// adjustable by the callback below.
	done := 0

	// Total bytes pending in the asynchronous workers for buffers. This is
	// used to process the proper regions of the input as inline buffers.
	var (
		pendingPre    = r.nextInput - r.nextOutput
		pendingInline = 0
	)

	// Define our callback for completed work.
	callback := func(c *chunk) error {
		// Check for an inline buffer.
		if pendingPre == 0 && pendingInline > 0 {
			pendingInline--
			done += c.uncompressed.Len()
			return nil
		}

		// Copy the resulting buffer to our intermediate one, and
		// return errNewBuffer to ensure that we aren't called a second
		// time. This error code is handled specially below.
		//
		// c.buf will be freed and return to the pool when it is done.
		if pendingPre > 0 {
			pendingPre--
		}
		r.buf = c.uncompressed
		return errNewBuffer
	}

	for done < len(p) {
		// Do we have buffered data available?
		if r.buf != nil {
			n, err := r.buf.Read(p[done:])
			done += n
			if err == io.EOF {
				// This is the uncompressed buffer, it can be
				// returned to the pool at this point.
				r.buf.Reset()
				bufPool.Put(r.buf)
				r.buf = nil
			} else if err != nil {
				// Should never happen.
				defer r.stop()
				return done, err
			}
			continue
		}

		// Read the length of the next chunk and reset the
		// reader. The length is used to limit the reader.
		//
		// See writer.flush.
		l, err := binary.ReadUint32(r.in, binary.BigEndian)
		if err != nil {
			// This is generally okay as long as there
			// are still buffers outstanding. We actually
			// just wait for completion of those buffers here
			// and continue our loop.
			if err := r.schedule(nil, callback); err == nil {
				// We've actually finished all buffers; this is
				// the normal EOF exit path.
				defer r.stop()
				return done, io.EOF
			} else if err == errNewBuffer {
				// A new buffer is now available.
				continue
			} else {
				// Some other error occurred; we cannot
				// process any further.
				defer r.stop()
				return done, err
			}
		}

		// Read this chunk and schedule decompression.
		compressed := bufPool.Get().(*bytes.Buffer)
		if _, err := io.CopyN(compressed, r.in, int64(l)); err != nil {
			// Some other error occurred; see above.
			if err == io.EOF {
				err = io.ErrUnexpectedEOF
			}
			return done, err
		}

		var sum []byte
		if r.hashPool != nil {
			sum = make([]byte, len(r.lastSum))
			if _, err := io.ReadFull(r.in, sum); err != nil {
				if err == io.EOF {
					err = io.ErrUnexpectedEOF
				}
				return done, err
			}
		}

		// Are we doing inline decoding?
		//
		// Note that we need to check the length here against
		// bytes.MinRead, since the bytes library will choose to grow
		// the slice if the available capacity is not at least
		// bytes.MinRead. This limits inline decoding to chunkSizes
		// that are at least bytes.MinRead (which is not unreasonable).
		var c *chunk
		start := done + ((pendingPre + pendingInline) * int(r.chunkSize))
		if len(p) >= start+int(r.chunkSize) && len(p) >= start+bytes.MinRead {
			c = newChunk(r.lastSum, sum, compressed, bytes.NewBuffer(p[start:start]))
			pendingInline++
		} else {
			c = newChunk(r.lastSum, sum, compressed, nil)
		}
		r.lastSum = sum
		if err := r.schedule(c, callback); err == errNewBuffer {
			// A new buffer was completed while we were reading.
			// That's great, but we need to force schedule the
			// current buffer so that it does not get lost.
			//
			// It is safe to pass nil as an output function here,
			// because we know that we just freed up a slot above.
			r.schedule(c, nil)
		} else if err != nil {
			// Some other error occurred; see above.
			defer r.stop()
			return done, err
		}
	}

	// Make sure that everything has been decoded successfully, otherwise
	// parts of p may not actually have completed.
	for pendingInline > 0 {
		if err := r.schedule(nil, func(c *chunk) error {
			if err := callback(c); err != nil {
				return err
			}
			// The nil case means that an inline buffer has
			// completed. The callback will have already removed
			// the inline buffer from the map, so we just return an
			// error to check the top of the loop again.
			return errNewBuffer
		}); err != errNewBuffer {
			// Some other error occurred; see above.
			return done, err
		}
	}

	// Need to return done here, since it may have been adjusted by the
	// callback to compensation for partial reads on some inline buffer.
	return done, nil
}

// writer chunks and schedules writes.
type writer struct {
	pool

	// out is the underlying writer.
	out io.Writer

	// closed indicates whether the file has been closed.
	closed bool
}

// NewWriter returns a new compressed writer. If key is non-nil, hash values are
// generated and written out for compressed bytes. See package comments for
// details.
//
// The recommended chunkSize is on the order of 1M. Extra memory may be
// buffered (in the form of read-ahead, or buffered writes), and is limited to
// O(chunkSize * [1+GOMAXPROCS]).
func NewWriter(out io.Writer, key []byte, chunkSize uint32, level int) (io.WriteCloser, error) {
	w := &writer{
		pool: pool{
			chunkSize: chunkSize,
			buf:       bufPool.Get().(*bytes.Buffer),
		},
		out: out,
	}
	w.init(key, 1+runtime.GOMAXPROCS(0), true, level)

	if err := binary.WriteUint32(w.out, binary.BigEndian, chunkSize); err != nil {
		return nil, err
	}

	if w.hashPool != nil {
		h := w.hashPool.getHash()
		binary.WriteUint32(h, binary.BigEndian, chunkSize)
		w.lastSum = h.Sum(nil)
		w.hashPool.putHash(h)
		if _, err := io.CopyN(w.out, bytes.NewReader(w.lastSum), int64(len(w.lastSum))); err != nil {
			return nil, err
		}
	}

	return w, nil
}

// flush writes a single buffer.
func (w *writer) flush(c *chunk) error {
	// Prefix each chunk with a length; this allows the reader to safely
	// limit reads while buffering.
	l := uint32(c.compressed.Len())
	if err := binary.WriteUint32(w.out, binary.BigEndian, l); err != nil {
		return err
	}

	// Write out to the stream.
	if _, err := io.CopyN(w.out, c.compressed, int64(c.compressed.Len())); err != nil {
		return err
	}

	if w.hashPool != nil {
		io.CopyN(c.h, bytes.NewReader(w.lastSum), int64(len(w.lastSum)))
		sum := c.h.Sum(nil)
		w.hashPool.putHash(c.h)
		c.h = nil
		if _, err := io.CopyN(w.out, bytes.NewReader(sum), int64(len(sum))); err != nil {
			return err
		}
		w.lastSum = sum
	}

	return nil
}

// Write implements io.Writer.Write.
func (w *writer) Write(p []byte) (int, error) {
	w.mu.Lock()
	defer w.mu.Unlock()

	// Did we close already?
	if w.closed {
		return 0, io.ErrUnexpectedEOF
	}

	// See above; we need to track in the same way.
	var (
		pendingPre    = w.nextInput - w.nextOutput
		pendingInline = 0
	)
	callback := func(c *chunk) error {
		if pendingPre == 0 && pendingInline > 0 {
			pendingInline--
			return w.flush(c)
		}
		if pendingPre > 0 {
			pendingPre--
		}
		err := w.flush(c)
		c.uncompressed.Reset()
		bufPool.Put(c.uncompressed)
		return err
	}

	for done := 0; done < len(p); {
		// Construct an inline buffer if we're doing an inline
		// encoding; see above regarding the bytes.MinRead constraint.
		if w.buf.Len() == 0 && len(p) >= done+int(w.chunkSize) && len(p) >= done+bytes.MinRead {
			bufPool.Put(w.buf) // Return to the pool; never scheduled.
			w.buf = bytes.NewBuffer(p[done : done+int(w.chunkSize)])
			done += int(w.chunkSize)
			pendingInline++
		}

		// Do we need to flush w.buf? Note that this case should be hit
		// immediately following the inline case above.
		left := int(w.chunkSize) - w.buf.Len()
		if left == 0 {
			if err := w.schedule(newChunk(nil, nil, nil, w.buf), callback); err != nil {
				return done, err
			}
			// Reset the buffer, since this has now been scheduled
			// for compression. Note that this may be trampled
			// immediately by the bufPool.Put(w.buf) above if the
			// next buffer happens to be inline, but that's okay.
			w.buf = bufPool.Get().(*bytes.Buffer)
			continue
		}

		// Read from p into w.buf.
		toWrite := len(p) - done
		if toWrite > left {
			toWrite = left
		}
		n, err := w.buf.Write(p[done : done+toWrite])
		done += n
		if err != nil {
			return done, err
		}
	}

	// Make sure that everything has been flushed, we can't return until
	// all the contents from p have been used.
	for pendingInline > 0 {
		if err := w.schedule(nil, func(c *chunk) error {
			if err := callback(c); err != nil {
				return err
			}
			// The flush was successful, return errNewBuffer here
			// to break from the loop and check the condition
			// again.
			return errNewBuffer
		}); err != errNewBuffer {
			return len(p), err
		}
	}

	return len(p), nil
}

// Close implements io.Closer.Close.
func (w *writer) Close() error {
	w.mu.Lock()
	defer w.mu.Unlock()

	// Did we already close? After the call to Close, we always mark as
	// closed, regardless of whether the flush is successful.
	if w.closed {
		return io.ErrUnexpectedEOF
	}
	w.closed = true
	defer w.stop()

	// Schedule any remaining partial buffer; we pass w.flush directly here
	// because the final buffer is guaranteed to not be an inline buffer.
	if w.buf.Len() > 0 {
		if err := w.schedule(newChunk(nil, nil, nil, w.buf), w.flush); err != nil {
			return err
		}
	}

	// Flush all scheduled buffers; see above.
	if err := w.schedule(nil, w.flush); err != nil {
		return err
	}

	// Close the underlying writer (if necessary).
	if closer, ok := w.out.(io.Closer); ok {
		return closer.Close()
	}
	return nil
}