summaryrefslogtreecommitdiffhomepage
path: root/pkg/bpf/interpreter.go
blob: 86c7add4dd6884fd85153ce0d735724c6f485f98 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
// Copyright 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package bpf

import (
	"fmt"

	"gvisor.googlesource.com/gvisor/pkg/abi/linux"
)

// Possible values for ProgramError.Code.
const (
	// DivisionByZero indicates that a program contains, or executed, a
	// division or modulo by zero.
	DivisionByZero = iota

	// InvalidEndOfProgram indicates that the last instruction of a program is
	// not a return.
	InvalidEndOfProgram

	// InvalidInstructionCount indicates that a program has zero instructions
	// or more than MaxInstructions instructions.
	InvalidInstructionCount

	// InvalidJumpTarget indicates that a program contains a jump whose target
	// is outside of the program's bounds.
	InvalidJumpTarget

	// InvalidLoad indicates that a program executed an invalid load of input
	// data.
	InvalidLoad

	// InvalidOpcode indicates that a program contains an instruction with an
	// invalid opcode.
	InvalidOpcode

	// InvalidRegister indicates that a program contains a load from, or store
	// to, a non-existent M register (index >= ScratchMemRegisters).
	InvalidRegister
)

// Error is an error encountered while compiling or executing a BPF program.
type Error struct {
	// Code indicates the kind of error that occurred.
	Code int

	// PC is the program counter (index into the list of instructions) at which
	// the error occurred.
	PC int
}

func (e Error) codeString() string {
	switch e.Code {
	case DivisionByZero:
		return "division by zero"
	case InvalidEndOfProgram:
		return "last instruction must be a return"
	case InvalidInstructionCount:
		return "invalid number of instructions"
	case InvalidJumpTarget:
		return "jump target out of bounds"
	case InvalidLoad:
		return "load out of bounds or violates input alignment requirements"
	case InvalidOpcode:
		return "invalid instruction opcode"
	case InvalidRegister:
		return "invalid M register"
	default:
		return "unknown error"
	}
}

// Error implements error.Error.
func (e Error) Error() string {
	return fmt.Sprintf("at l%d: %s", e.PC, e.codeString())
}

// Program is a BPF program that has been validated for consistency.
//
// +stateify savable
type Program struct {
	instructions []linux.BPFInstruction
}

// Length returns the number of instructions in the program.
func (p Program) Length() int {
	return len(p.instructions)
}

// Compile performs validation on a sequence of BPF instructions before
// wrapping them in a Program.
func Compile(insns []linux.BPFInstruction) (Program, error) {
	if len(insns) == 0 || len(insns) > MaxInstructions {
		return Program{}, Error{InvalidInstructionCount, len(insns)}
	}

	// The last instruction must be a return.
	if last := insns[len(insns)-1]; last.OpCode != (Ret|K) && last.OpCode != (Ret|A) {
		return Program{}, Error{InvalidEndOfProgram, len(insns) - 1}
	}

	// Validate each instruction. Note that we skip a validation Linux does:
	// Linux additionally verifies that every load from an M register is
	// preceded, in every path, by a store to the same M register, in order to
	// avoid having to clear M between programs
	// (net/core/filter.c:check_load_and_stores). We always start with a zeroed
	// M array.
	for pc, i := range insns {
		if i.OpCode&unusedBitsMask != 0 {
			return Program{}, Error{InvalidOpcode, pc}
		}
		switch i.OpCode & instructionClassMask {
		case Ld:
			mode := i.OpCode & loadModeMask
			switch i.OpCode & loadSizeMask {
			case W:
				if mode != Imm && mode != Abs && mode != Ind && mode != Mem && mode != Len {
					return Program{}, Error{InvalidOpcode, pc}
				}
				if mode == Mem && i.K >= ScratchMemRegisters {
					return Program{}, Error{InvalidRegister, pc}
				}
			case H, B:
				if mode != Abs && mode != Ind {
					return Program{}, Error{InvalidOpcode, pc}
				}
			default:
				return Program{}, Error{InvalidOpcode, pc}
			}
		case Ldx:
			mode := i.OpCode & loadModeMask
			switch i.OpCode & loadSizeMask {
			case W:
				if mode != Imm && mode != Mem && mode != Len {
					return Program{}, Error{InvalidOpcode, pc}
				}
				if mode == Mem && i.K >= ScratchMemRegisters {
					return Program{}, Error{InvalidRegister, pc}
				}
			case B:
				if mode != Msh {
					return Program{}, Error{InvalidOpcode, pc}
				}
			default:
				return Program{}, Error{InvalidOpcode, pc}
			}
		case St, Stx:
			if i.OpCode&storeUnusedBitsMask != 0 {
				return Program{}, Error{InvalidOpcode, pc}
			}
			if i.K >= ScratchMemRegisters {
				return Program{}, Error{InvalidRegister, pc}
			}
		case Alu:
			switch i.OpCode & aluMask {
			case Add, Sub, Mul, Or, And, Lsh, Rsh, Xor:
				break
			case Div, Mod:
				if src := i.OpCode & srcAluJmpMask; src == K && i.K == 0 {
					return Program{}, Error{DivisionByZero, pc}
				}
			case Neg:
				// Negation doesn't take a source operand.
				if i.OpCode&srcAluJmpMask != 0 {
					return Program{}, Error{InvalidOpcode, pc}
				}
			default:
				return Program{}, Error{InvalidOpcode, pc}
			}
		case Jmp:
			switch i.OpCode & jmpMask {
			case Ja:
				// Unconditional jump doesn't take a source operand.
				if i.OpCode&srcAluJmpMask != 0 {
					return Program{}, Error{InvalidOpcode, pc}
				}
				// Do the comparison in 64 bits to avoid the possibility of
				// overflow from a very large i.K.
				if uint64(pc)+uint64(i.K)+1 >= uint64(len(insns)) {
					return Program{}, Error{InvalidJumpTarget, pc}
				}
			case Jeq, Jgt, Jge, Jset:
				// jt and jf are uint16s, so there's no threat of overflow.
				if pc+int(i.JumpIfTrue)+1 >= len(insns) {
					return Program{}, Error{InvalidJumpTarget, pc}
				}
				if pc+int(i.JumpIfFalse)+1 >= len(insns) {
					return Program{}, Error{InvalidJumpTarget, pc}
				}
			default:
				return Program{}, Error{InvalidOpcode, pc}
			}
		case Ret:
			if i.OpCode&retUnusedBitsMask != 0 {
				return Program{}, Error{InvalidOpcode, pc}
			}
			if src := i.OpCode & srcRetMask; src != K && src != A {
				return Program{}, Error{InvalidOpcode, pc}
			}
		case Misc:
			if misc := i.OpCode & miscMask; misc != Tax && misc != Txa {
				return Program{}, Error{InvalidOpcode, pc}
			}
		}
	}

	return Program{insns}, nil
}

// Input represents a source of input data for a BPF program. (BPF
// documentation sometimes refers to the input data as the "packet" due to its
// origins as a packet processing DSL.)
//
// For all of Input's Load methods:
//
// - The second (bool) return value is true if the load succeeded and false
// otherwise.
//
// - Inputs should not assume that the loaded range falls within the input
// data's length. Inputs should return false if the load falls outside of the
// input data.
//
// - Inputs should not assume that the offset is correctly aligned. Inputs may
// choose to service or reject loads to unaligned addresses.
type Input interface {
	// Load32 reads 32 bits from the input starting at the given byte offset.
	Load32(off uint32) (uint32, bool)

	// Load16 reads 16 bits from the input starting at the given byte offset.
	Load16(off uint32) (uint16, bool)

	// Load8 reads 8 bits from the input starting at the given byte offset.
	Load8(off uint32) (uint8, bool)

	// Length returns the length of the input in bytes.
	Length() uint32
}

// machine represents the state of a BPF virtual machine.
type machine struct {
	A uint32
	X uint32
	M [ScratchMemRegisters]uint32
}

func conditionalJumpOffset(insn linux.BPFInstruction, cond bool) int {
	if cond {
		return int(insn.JumpIfTrue)
	}
	return int(insn.JumpIfFalse)
}

// Exec executes a BPF program over the given input and returns its return
// value.
func Exec(p Program, in Input) (uint32, error) {
	var m machine
	var pc int
	for ; pc < len(p.instructions); pc++ {
		i := p.instructions[pc]
		switch i.OpCode {
		case Ld | Imm | W:
			m.A = i.K
		case Ld | Abs | W:
			val, ok := in.Load32(i.K)
			if !ok {
				return 0, Error{InvalidLoad, pc}
			}
			m.A = val
		case Ld | Abs | H:
			val, ok := in.Load16(i.K)
			if !ok {
				return 0, Error{InvalidLoad, pc}
			}
			m.A = uint32(val)
		case Ld | Abs | B:
			val, ok := in.Load8(i.K)
			if !ok {
				return 0, Error{InvalidLoad, pc}
			}
			m.A = uint32(val)
		case Ld | Ind | W:
			val, ok := in.Load32(m.X + i.K)
			if !ok {
				return 0, Error{InvalidLoad, pc}
			}
			m.A = val
		case Ld | Ind | H:
			val, ok := in.Load16(m.X + i.K)
			if !ok {
				return 0, Error{InvalidLoad, pc}
			}
			m.A = uint32(val)
		case Ld | Ind | B:
			val, ok := in.Load8(m.X + i.K)
			if !ok {
				return 0, Error{InvalidLoad, pc}
			}
			m.A = uint32(val)
		case Ld | Mem | W:
			m.A = m.M[int(i.K)]
		case Ld | Len | W:
			m.A = in.Length()
		case Ldx | Imm | W:
			m.X = i.K
		case Ldx | Mem | W:
			m.X = m.M[int(i.K)]
		case Ldx | Len | W:
			m.X = in.Length()
		case Ldx | Msh | B:
			val, ok := in.Load8(i.K)
			if !ok {
				return 0, Error{InvalidLoad, pc}
			}
			m.X = 4 * uint32(val&0xf)
		case St:
			m.M[int(i.K)] = m.A
		case Stx:
			m.M[int(i.K)] = m.X
		case Alu | Add | K:
			m.A += i.K
		case Alu | Add | X:
			m.A += m.X
		case Alu | Sub | K:
			m.A -= i.K
		case Alu | Sub | X:
			m.A -= m.X
		case Alu | Mul | K:
			m.A *= i.K
		case Alu | Mul | X:
			m.A *= m.X
		case Alu | Div | K:
			// K != 0 already checked by Compile.
			m.A /= i.K
		case Alu | Div | X:
			if m.X == 0 {
				return 0, Error{DivisionByZero, pc}
			}
			m.A /= m.X
		case Alu | Or | K:
			m.A |= i.K
		case Alu | Or | X:
			m.A |= m.X
		case Alu | And | K:
			m.A &= i.K
		case Alu | And | X:
			m.A &= m.X
		case Alu | Lsh | K:
			m.A <<= i.K
		case Alu | Lsh | X:
			m.A <<= m.X
		case Alu | Rsh | K:
			m.A >>= i.K
		case Alu | Rsh | X:
			m.A >>= m.X
		case Alu | Neg:
			m.A = uint32(-int32(m.A))
		case Alu | Mod | K:
			// K != 0 already checked by Compile.
			m.A %= i.K
		case Alu | Mod | X:
			if m.X == 0 {
				return 0, Error{DivisionByZero, pc}
			}
			m.A %= m.X
		case Alu | Xor | K:
			m.A ^= i.K
		case Alu | Xor | X:
			m.A ^= m.X
		case Jmp | Ja:
			pc += int(i.K)
		case Jmp | Jeq | K:
			pc += conditionalJumpOffset(i, m.A == i.K)
		case Jmp | Jeq | X:
			pc += conditionalJumpOffset(i, m.A == m.X)
		case Jmp | Jgt | K:
			pc += conditionalJumpOffset(i, m.A > i.K)
		case Jmp | Jgt | X:
			pc += conditionalJumpOffset(i, m.A > m.X)
		case Jmp | Jge | K:
			pc += conditionalJumpOffset(i, m.A >= i.K)
		case Jmp | Jge | X:
			pc += conditionalJumpOffset(i, m.A >= m.X)
		case Jmp | Jset | K:
			pc += conditionalJumpOffset(i, (m.A&i.K) != 0)
		case Jmp | Jset | X:
			pc += conditionalJumpOffset(i, (m.A&m.X) != 0)
		case Ret | K:
			return i.K, nil
		case Ret | A:
			return m.A, nil
		case Misc | Tax:
			m.A = m.X
		case Misc | Txa:
			m.X = m.A
		default:
			return 0, Error{InvalidOpcode, pc}
		}
	}
	return 0, Error{InvalidEndOfProgram, pc}
}