// Copyright 2019 The gVisor Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Package analysis implements common functionality used by generated // go_marshal tests. package analysis // All functions in this package are unsafe and are not intended for general // consumption. They contain sharp edge cases and the caller is responsible for // ensuring none of them are hit. Callers must be carefully to pass in only sane // arguments. Failure to do so may cause panics at best and arbitrary memory // corruption at worst. // // Never use outside of tests. import ( "fmt" "math/rand" "reflect" "testing" "unsafe" ) // RandomizeValue assigns random value(s) to an abitrary type. This is intended // for used with ABI structs from go_marshal, meaning the typical restrictions // apply (fixed-size types, no pointers, maps, channels, etc), and should only // be used on zeroed values to avoid overwriting pointers to active go objects. // // Internally, we populate the type with random data by doing an unsafe cast to // access the underlying memory of the type and filling it as if it were a byte // slice. This almost gets us what we want, but padding fields named "_" are // normally not accessible, so we walk the type and recursively zero all "_" // fields. // // Precondition: x must be a pointer. x must not contain any valid // pointers to active go objects (pointer fields aren't allowed in ABI // structs anyways), or we'd be violating the go runtime contract and // the GC may malfunction. func RandomizeValue(x interface{}) { v := reflect.Indirect(reflect.ValueOf(x)) if !v.CanSet() { panic("RandomizeType() called with an unaddressable value. You probably need to pass a pointer to the argument") } // Cast the underlying memory for the type into a byte slice. var b []byte hdr := (*reflect.SliceHeader)(unsafe.Pointer(&b)) // Note: v.UnsafeAddr panics if x is passed by value. x should be a pointer. hdr.Data = v.UnsafeAddr() hdr.Len = int(v.Type().Size()) hdr.Cap = hdr.Len // Fill the byte slice with random data, which in effect fills the type with // random values. n, err := rand.Read(b) if err != nil || n != len(b) { panic("unreachable") } // Normally, padding fields are not accessible, so zero them out. reflectZeroPaddingFields(v.Type(), b, false) } // reflectZeroPaddingFields assigns zero values to padding fields for the value // of type r, represented by the memory in data. Padding fields are defined as // fields with the name "_". If zero is true, the immediate value itself is // zeroed. In addition, the type is recursively scanned for padding fields in // inner types. // // This is used for zeroing padding fields after calling RandomizeValue. func reflectZeroPaddingFields(r reflect.Type, data []byte, zero bool) { if zero { for i := range data { data[i] = 0 } } switch r.Kind() { case reflect.Int8, reflect.Uint8, reflect.Int16, reflect.Uint16, reflect.Int32, reflect.Uint32, reflect.Int64, reflect.Uint64: // These types are explicitly allowed in an ABI type, but we don't need // to recurse further as they're scalar types. case reflect.Struct: for i, numFields := 0, r.NumField(); i < numFields; i++ { f := r.Field(i) off := f.Offset len := f.Type.Size() window := data[off : off+len] reflectZeroPaddingFields(f.Type, window, f.Name == "_") } case reflect.Array: eLen := int(r.Elem().Size()) if int(r.Size()) != eLen*r.Len() { panic("Array has unexpected size?") } for i, n := 0, r.Len(); i < n; i++ { reflectZeroPaddingFields(r.Elem(), data[i*eLen:(i+1)*eLen], false) } default: panic(fmt.Sprintf("Type %v not allowed in ABI struct", r.Kind())) } } // AlignmentCheck ensures the definition of the type represented by typ doesn't // cause the go compiler to emit implicit padding between elements of the type // (i.e. fields in a struct). // // AlignmentCheck doesn't explicitly recurse for embedded structs because any // struct present in an ABI struct must also be Marshallable, and therefore // they're aligned by definition (or their alignment check would have failed). func AlignmentCheck(t *testing.T, typ reflect.Type) (ok bool, delta uint64) { switch typ.Kind() { case reflect.Int8, reflect.Uint8, reflect.Int16, reflect.Uint16, reflect.Int32, reflect.Uint32, reflect.Int64, reflect.Uint64: // Primitive types are always considered well aligned. Primitive types // that are fields in structs are checked independently, this branch // exists to handle recursive calls to alignmentCheck. case reflect.Struct: xOff := 0 nextXOff := 0 skipNext := false for i, numFields := 0, typ.NumField(); i < numFields; i++ { xOff = nextXOff f := typ.Field(i) fmt.Printf("Checking alignment of %s.%s @ %d [+%d]...\n", typ.Name(), f.Name, f.Offset, f.Type.Size()) nextXOff = int(f.Offset + f.Type.Size()) if f.Name == "_" { // Padding fields need not be aligned. fmt.Printf("Padding field of type %v\n", f.Type) continue } if tag, ok := f.Tag.Lookup("marshal"); ok && tag == "unaligned" { skipNext = true continue } if skipNext { skipNext = false fmt.Printf("Skipping alignment check for field %s.%s explicitly marked as unaligned.\n", typ.Name(), f.Name) continue } if xOff != int(f.Offset) { implicitPad := int(f.Offset) - xOff t.Fatalf("Suspect offset for field %s.%s, detected an implicit %d byte padding from offset %d to %d; either add %d bytes of explicit padding before this field or tag it as `marshal:\"unaligned\"`.", typ.Name(), f.Name, implicitPad, xOff, f.Offset, implicitPad) } } // Ensure structs end on a byte explicitly defined by the type. if typ.NumField() > 0 && nextXOff != int(typ.Size()) { implicitPad := int(typ.Size()) - nextXOff f := typ.Field(typ.NumField() - 1) // Final field if tag, ok := f.Tag.Lookup("marshal"); ok && tag == "unaligned" { // Final field explicitly marked unaligned. break } t.Fatalf("Suspect offset for field %s.%s at the end of %s, detected an implicit %d byte padding from offset %d to %d at the end of the struct; either add %d bytes of explict padding at end of the struct or tag the final field %s as `marshal:\"unaligned\"`.", typ.Name(), f.Name, typ.Name(), implicitPad, nextXOff, typ.Size(), implicitPad, f.Name) } case reflect.Array: // Independent arrays are also always considered well aligned. We only // need to worry about their alignment when they're embedded in structs, // which we handle above. default: t.Fatalf("Unsupported type in ABI struct while checking for field alignment for type: %v", typ.Kind()) } return true, uint64(typ.Size()) }