// Copyright 2021 The gVisor Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Binary fieldenum emits field bitmasks for all structs in a package marked // "+fieldenum". package main import ( "flag" "fmt" "go/ast" "go/parser" "go/token" "log" "os" "strings" ) var ( outputPkg = flag.String("pkg", "", "output package") outputFilename = flag.String("out", "-", "output filename") ) func main() { // Parse command line arguments. flag.Parse() if len(*outputPkg) == 0 { log.Fatalf("-pkg must be provided") } if len(flag.Args()) == 0 { log.Fatalf("Input files must be provided") } // Parse input files. inputFiles := make([]*ast.File, 0, len(flag.Args())) fset := token.NewFileSet() for _, filename := range flag.Args() { f, err := parser.ParseFile(fset, filename, nil, parser.ParseComments) if err != nil { log.Fatalf("Failed to parse input file %q: %v", filename, err) } inputFiles = append(inputFiles, f) } // Determine which types are marked "+fieldenum" and will consequently have // code generated. fieldEnumTypes := make(map[string]fieldEnumTypeInfo) for _, f := range inputFiles { for _, decl := range f.Decls { d, ok := decl.(*ast.GenDecl) if !ok || d.Tok != token.TYPE || d.Doc == nil || len(d.Specs) == 0 { continue } for _, l := range d.Doc.List { const fieldenumPrefixWithSpace = "// +fieldenum " if l.Text == "// +fieldenum" || strings.HasPrefix(l.Text, fieldenumPrefixWithSpace) { spec := d.Specs[0].(*ast.TypeSpec) name := spec.Name.Name prefix := name if len(l.Text) > len(fieldenumPrefixWithSpace) { prefix = strings.TrimSpace(l.Text[len(fieldenumPrefixWithSpace):]) } st, ok := spec.Type.(*ast.StructType) if !ok { log.Fatalf("Type %s is marked +fieldenum, but is not a struct", name) } fieldEnumTypes[name] = fieldEnumTypeInfo{ prefix: prefix, structType: st, } break } } } } // Collect information for each type for which code is being generated. structInfos := make([]structInfo, 0, len(fieldEnumTypes)) needSyncAtomic := false for typeName, typeInfo := range fieldEnumTypes { var si structInfo si.name = typeName si.prefix = typeInfo.prefix for _, field := range typeInfo.structType.Fields.List { name := structFieldName(field) // If the field's type is a type that is also marked +fieldenum, // include a FieldSet for that type in this one's. The field must // be a struct by value, since if it's a pointer then that struct // might also point to or include this one (which would make // FieldSet inclusion circular). It must also be a type defined in // this package, since otherwise we don't know whether it's marked // +fieldenum. Thus, field.Type must be an identifier (rather than // an ast.StarExpr or SelectorExpr). if tident, ok := field.Type.(*ast.Ident); ok { if fieldTypeInfo, ok := fieldEnumTypes[tident.Name]; ok { fsf := fieldSetField{ fieldName: name, typePrefix: fieldTypeInfo.prefix, } si.reprByFieldSet = append(si.reprByFieldSet, fsf) si.allFields = append(si.allFields, fsf) continue } } si.reprByBit = append(si.reprByBit, name) si.allFields = append(si.allFields, fieldSetField{ fieldName: name, }) // sync/atomic import will be needed for FieldSet.Load(). needSyncAtomic = true } structInfos = append(structInfos, si) } // Build the output file. var b strings.Builder fmt.Fprintf(&b, "// Generated by go_fieldenum.\n\n") fmt.Fprintf(&b, "package %s\n\n", *outputPkg) if needSyncAtomic { fmt.Fprintf(&b, "import \"sync/atomic\"\n\n") } for _, si := range structInfos { si.writeTo(&b) } if *outputFilename == "-" { // Write output to stdout. fmt.Printf("%s", b.String()) } else { // Write output to file. f, err := os.OpenFile(*outputFilename, os.O_WRONLY|os.O_CREATE|os.O_EXCL, 0644) if err != nil { log.Fatalf("Failed to open output file %q: %v", *outputFilename, err) } if _, err := f.WriteString(b.String()); err != nil { log.Fatalf("Failed to write output file %q: %v", *outputFilename, err) } f.Close() } } type fieldEnumTypeInfo struct { prefix string structType *ast.StructType } // structInfo contains information about the code generated for a given struct. type structInfo struct { // name is the name of the represented struct. name string // prefix is the prefix X applied to the name of each generated type and // constant, referred to as X in the comments below for convenience. prefix string // reprByBit contains the names of fields in X that should be represented // by a bit in the bit mask XFieldSet.fields, and by a bool in XFields. reprByBit []string // reprByFieldSet contains fields in X whose type is a named struct (e.g. // Y) that has a corresponding FieldSet type YFieldSet, and which should // therefore be represented by including a value of type YFieldSet in // XFieldSet, and a value of type YFields in XFields. reprByFieldSet []fieldSetField // allFields contains all fields in X in order of declaration. Fields in // reprByBit have fieldSetField.typePrefix == "". allFields []fieldSetField } type fieldSetField struct { fieldName string typePrefix string } func structFieldName(f *ast.Field) string { if len(f.Names) != 0 { return f.Names[0].Name } // For embedded struct fields, the field name is the unqualified type name. texpr := f.Type for { switch t := texpr.(type) { case *ast.StarExpr: texpr = t.X case *ast.SelectorExpr: texpr = t.Sel case *ast.Ident: return t.Name default: panic(fmt.Sprintf("unexpected %T", texpr)) } } } // Workaround for Go defect (map membership test isn't usable in an // expression). func fetContains(xs map[string]*ast.StructType, x string) bool { _, ok := xs[x] return ok } func (si *structInfo) writeTo(b *strings.Builder) { fmt.Fprintf(b, "// A %sField represents a field in %s.\n", si.prefix, si.name) fmt.Fprintf(b, "type %sField uint\n\n", si.prefix) if len(si.reprByBit) != 0 { fmt.Fprintf(b, "// %sFieldX represents %s field X.\n", si.prefix, si.name) fmt.Fprintf(b, "const (\n") fmt.Fprintf(b, "\t%sField%s %sField = iota\n", si.prefix, si.reprByBit[0], si.prefix) for _, fieldName := range si.reprByBit[1:] { fmt.Fprintf(b, "\t%sField%s\n", si.prefix, fieldName) } fmt.Fprintf(b, ")\n\n") } fmt.Fprintf(b, "// %sFields represents a set of fields in %s in a literal-friendly form.\n", si.prefix, si.name) fmt.Fprintf(b, "// The zero value of %sFields represents an empty set.\n", si.prefix) fmt.Fprintf(b, "type %sFields struct {\n", si.prefix) for _, fieldSetField := range si.allFields { if fieldSetField.typePrefix == "" { fmt.Fprintf(b, "\t%s bool\n", fieldSetField.fieldName) } else { fmt.Fprintf(b, "\t%s %sFields\n", fieldSetField.fieldName, fieldSetField.typePrefix) } } fmt.Fprintf(b, "}\n\n") fmt.Fprintf(b, "// %sFieldSet represents a set of fields in %s in a compact form.\n", si.prefix, si.name) fmt.Fprintf(b, "// The zero value of %sFieldSet represents an empty set.\n", si.prefix) fmt.Fprintf(b, "type %sFieldSet struct {\n", si.prefix) numBitmaskUint32s := (len(si.reprByBit) + 31) / 32 for _, fieldSetField := range si.reprByFieldSet { fmt.Fprintf(b, "\t%s %sFieldSet\n", fieldSetField.fieldName, fieldSetField.typePrefix) } if len(si.reprByBit) != 0 { fmt.Fprintf(b, "\tfields [%d]uint32\n", numBitmaskUint32s) } fmt.Fprintf(b, "}\n\n") if len(si.reprByBit) != 0 { fmt.Fprintf(b, "// Contains returns true if f is present in the %sFieldSet.\n", si.prefix) fmt.Fprintf(b, "func (fs %sFieldSet) Contains(f %sField) bool {\n", si.prefix, si.prefix) if numBitmaskUint32s == 1 { fmt.Fprintf(b, "\treturn fs.fields[0] & (uint32(1) << uint(f)) != 0\n") } else { fmt.Fprintf(b, "\treturn fs.fields[f/32] & (uint32(1) << (f%%32)) != 0\n") } fmt.Fprintf(b, "}\n\n") fmt.Fprintf(b, "// Add adds f to the %sFieldSet.\n", si.prefix) fmt.Fprintf(b, "func (fs *%sFieldSet) Add(f %sField) {\n", si.prefix, si.prefix) if numBitmaskUint32s == 1 { fmt.Fprintf(b, "\tfs.fields[0] |= uint32(1) << uint(f)\n") } else { fmt.Fprintf(b, "\tfs.fields[f/32] |= uint32(1) << (f%%32)\n") } fmt.Fprintf(b, "}\n\n") fmt.Fprintf(b, "// Remove removes f from the %sFieldSet.\n", si.prefix) fmt.Fprintf(b, "func (fs *%sFieldSet) Remove(f %sField) {\n", si.prefix, si.prefix) if numBitmaskUint32s == 1 { fmt.Fprintf(b, "\tfs.fields[0] &^= uint32(1) << uint(f)\n") } else { fmt.Fprintf(b, "\tfs.fields[f/32] &^= uint32(1) << (f%%32)\n") } fmt.Fprintf(b, "}\n\n") } fmt.Fprintf(b, "// Load returns a copy of the %sFieldSet.\n", si.prefix) fmt.Fprintf(b, "// Load is safe to call concurrently with AddFieldsLoadable, but not Add or Remove.\n") fmt.Fprintf(b, "func (fs *%sFieldSet) Load() (copied %sFieldSet) {\n", si.prefix, si.prefix) for _, fieldSetField := range si.reprByFieldSet { fmt.Fprintf(b, "\tcopied.%s = fs.%s.Load()\n", fieldSetField.fieldName, fieldSetField.fieldName) } for i := 0; i < numBitmaskUint32s; i++ { fmt.Fprintf(b, "\tcopied.fields[%d] = atomic.LoadUint32(&fs.fields[%d])\n", i, i) } fmt.Fprintf(b, "\treturn\n") fmt.Fprintf(b, "}\n\n") fmt.Fprintf(b, "// AddFieldsLoadable adds the given fields to the %sFieldSet.\n", si.prefix) fmt.Fprintf(b, "// AddFieldsLoadable is safe to call concurrently with Load, but not other methods (including other calls to AddFieldsLoadable).\n") fmt.Fprintf(b, "func (fs *%sFieldSet) AddFieldsLoadable(fields %sFields) {\n", si.prefix, si.prefix) for _, fieldSetField := range si.reprByFieldSet { fmt.Fprintf(b, "\tfs.%s.AddFieldsLoadable(fields.%s)\n", fieldSetField.fieldName, fieldSetField.fieldName) } for _, fieldName := range si.reprByBit { fieldConstName := fmt.Sprintf("%sField%s", si.prefix, fieldName) fmt.Fprintf(b, "\tif fields.%s {\n", fieldName) if numBitmaskUint32s == 1 { fmt.Fprintf(b, "\t\tatomic.StoreUint32(&fs.fields[0], fs.fields[0] | (uint32(1) << uint(%s)))\n", fieldConstName) } else { fmt.Fprintf(b, "\t\tword, bit := %s/32, %s%%32\n", fieldConstName, fieldConstName) fmt.Fprintf(b, "\t\tatomic.StoreUint32(&fs.fields[word], fs.fields[word] | (uint32(1) << bit))\n") } fmt.Fprintf(b, "\t}\n") } fmt.Fprintf(b, "}\n\n") }