// Copyright 2018 The gVisor Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include <fcntl.h> #include <linux/aio_abi.h> #include <sys/mman.h> #include <sys/syscall.h> #include <sys/types.h> #include <unistd.h> #include <algorithm> #include <string> #include "gtest/gtest.h" #include "test/syscalls/linux/file_base.h" #include "test/util/cleanup.h" #include "test/util/file_descriptor.h" #include "test/util/fs_util.h" #include "test/util/memory_util.h" #include "test/util/posix_error.h" #include "test/util/proc_util.h" #include "test/util/temp_path.h" #include "test/util/test_util.h" using ::testing::_; namespace gvisor { namespace testing { namespace { // Returns the size of the VMA containing the given address. PosixErrorOr<size_t> VmaSizeAt(uintptr_t addr) { ASSIGN_OR_RETURN_ERRNO(std::string proc_self_maps, GetContents("/proc/self/maps")); ASSIGN_OR_RETURN_ERRNO(auto entries, ParseProcMaps(proc_self_maps)); // Use binary search to find the first VMA that might contain addr. ProcMapsEntry target = {}; target.end = addr; auto it = std::upper_bound(entries.begin(), entries.end(), target, [](const ProcMapsEntry& x, const ProcMapsEntry& y) { return x.end < y.end; }); // Check that it actually contains addr. if (it == entries.end() || addr < it->start) { return PosixError(ENOENT, absl::StrCat("no VMA contains address ", addr)); } return it->end - it->start; } constexpr char kData[] = "hello world!"; int SubmitCtx(aio_context_t ctx, long nr, struct iocb** iocbpp) { return syscall(__NR_io_submit, ctx, nr, iocbpp); } class AIOTest : public FileTest { public: AIOTest() : ctx_(0) {} int SetupContext(unsigned int nr) { return syscall(__NR_io_setup, nr, &ctx_); } int Submit(long nr, struct iocb** iocbpp) { return SubmitCtx(ctx_, nr, iocbpp); } int GetEvents(long min, long max, struct io_event* events, struct timespec* timeout) { return RetryEINTR(syscall)(__NR_io_getevents, ctx_, min, max, events, timeout); } int DestroyContext() { return syscall(__NR_io_destroy, ctx_); } void TearDown() override { FileTest::TearDown(); if (ctx_ != 0) { ASSERT_THAT(DestroyContext(), SyscallSucceeds()); } } struct iocb CreateCallback() { struct iocb cb = {}; cb.aio_data = 0x123; cb.aio_fildes = test_file_fd_.get(); cb.aio_lio_opcode = IOCB_CMD_PWRITE; cb.aio_buf = reinterpret_cast<uint64_t>(kData); cb.aio_offset = 0; cb.aio_nbytes = strlen(kData); return cb; } protected: aio_context_t ctx_; }; TEST_F(AIOTest, BasicWrite) { // Copied from fs/aio.c. constexpr unsigned AIO_RING_MAGIC = 0xa10a10a1; struct aio_ring { unsigned id; unsigned nr; unsigned head; unsigned tail; unsigned magic; unsigned compat_features; unsigned incompat_features; unsigned header_length; struct io_event io_events[0]; }; // Setup a context that is 128 entries deep. ASSERT_THAT(SetupContext(128), SyscallSucceeds()); // Check that 'ctx_' points to a valid address. libaio uses it to check if // aio implementation uses aio_ring. gVisor doesn't and returns all zeroes. // Linux implements aio_ring, so skip the zeroes check. // // TODO(gvisor.dev/issue/204): Remove when gVisor implements aio_ring. auto ring = reinterpret_cast<struct aio_ring*>(ctx_); auto magic = IsRunningOnGvisor() ? 0 : AIO_RING_MAGIC; EXPECT_EQ(ring->magic, magic); struct iocb cb = CreateCallback(); struct iocb* cbs[1] = {&cb}; // Submit the request. ASSERT_THAT(Submit(1, cbs), SyscallSucceedsWithValue(1)); // Get the reply. struct io_event events[1]; ASSERT_THAT(GetEvents(1, 1, events, nullptr), SyscallSucceedsWithValue(1)); // Verify that it is as expected. EXPECT_EQ(events[0].data, 0x123); EXPECT_EQ(events[0].obj, reinterpret_cast<long>(&cb)); EXPECT_EQ(events[0].res, strlen(kData)); // Verify that the file contains the contents. char verify_buf[sizeof(kData)] = {}; ASSERT_THAT(read(test_file_fd_.get(), verify_buf, sizeof(kData)), SyscallSucceedsWithValue(strlen(kData))); EXPECT_STREQ(verify_buf, kData); } TEST_F(AIOTest, BadWrite) { // Create a pipe and immediately close the read end. int pipefd[2]; ASSERT_THAT(pipe(pipefd), SyscallSucceeds()); FileDescriptor rfd(pipefd[0]); FileDescriptor wfd(pipefd[1]); rfd.reset(); // Close the read end. // Setup a context that is 128 entries deep. ASSERT_THAT(SetupContext(128), SyscallSucceeds()); struct iocb cb = CreateCallback(); // Try to write to the read end. cb.aio_fildes = wfd.get(); struct iocb* cbs[1] = {&cb}; // Submit the request. ASSERT_THAT(Submit(1, cbs), SyscallSucceedsWithValue(1)); // Get the reply. struct io_event events[1]; ASSERT_THAT(GetEvents(1, 1, events, nullptr), SyscallSucceedsWithValue(1)); // Verify that it fails with the right error code. EXPECT_EQ(events[0].data, 0x123); EXPECT_EQ(events[0].obj, reinterpret_cast<uint64_t>(&cb)); EXPECT_LT(events[0].res, 0); } TEST_F(AIOTest, ExitWithPendingIo) { // Setup a context that is 5 entries deep. ASSERT_THAT(SetupContext(5), SyscallSucceeds()); struct iocb cb = CreateCallback(); struct iocb* cbs[] = {&cb}; // Submit a request but don't complete it to make it pending. EXPECT_THAT(Submit(1, cbs), SyscallSucceeds()); } int Submitter(void* arg) { auto test = reinterpret_cast<AIOTest*>(arg); struct iocb cb = test->CreateCallback(); struct iocb* cbs[1] = {&cb}; // Submit the request. TEST_CHECK(test->Submit(1, cbs) == 1); return 0; } TEST_F(AIOTest, CloneVm) { // Setup a context that is 128 entries deep. ASSERT_THAT(SetupContext(128), SyscallSucceeds()); const size_t kStackSize = 5 * kPageSize; std::unique_ptr<char[]> stack(new char[kStackSize]); char* bp = stack.get() + kStackSize; pid_t child; ASSERT_THAT(child = clone(Submitter, bp, CLONE_VM | SIGCHLD, reinterpret_cast<void*>(this)), SyscallSucceeds()); // Get the reply. struct io_event events[1]; ASSERT_THAT(GetEvents(1, 1, events, nullptr), SyscallSucceedsWithValue(1)); // Verify that it is as expected. EXPECT_EQ(events[0].data, 0x123); EXPECT_EQ(events[0].res, strlen(kData)); // Verify that the file contains the contents. char verify_buf[32] = {}; ASSERT_THAT(read(test_file_fd_.get(), &verify_buf[0], strlen(kData)), SyscallSucceeds()); EXPECT_EQ(strcmp(kData, &verify_buf[0]), 0); int status; ASSERT_THAT(RetryEINTR(waitpid)(child, &status, 0), SyscallSucceedsWithValue(child)); EXPECT_TRUE(WIFEXITED(status) && WEXITSTATUS(status) == 0) << " status " << status; } // Tests that AIO context can be remapped to a different address. TEST_F(AIOTest, Mremap) { // Setup a context that is 128 entries deep. ASSERT_THAT(SetupContext(128), SyscallSucceeds()); const size_t ctx_size = ASSERT_NO_ERRNO_AND_VALUE(VmaSizeAt(reinterpret_cast<uintptr_t>(ctx_))); struct iocb cb = CreateCallback(); struct iocb* cbs[1] = {&cb}; // Reserve address space for the mremap target so we have something safe to // map over. Mapping dst = ASSERT_NO_ERRNO_AND_VALUE(MmapAnon(ctx_size, PROT_READ, MAP_PRIVATE)); // Remap context 'handle' to a different address. ASSERT_THAT(Mremap(reinterpret_cast<void*>(ctx_), ctx_size, dst.len(), MREMAP_FIXED | MREMAP_MAYMOVE, dst.ptr()), IsPosixErrorOkAndHolds(dst.ptr())); aio_context_t old_ctx = ctx_; ctx_ = reinterpret_cast<aio_context_t>(dst.addr()); // io_destroy() will unmap dst now. dst.release(); // Check that submitting the request with the old 'ctx_' fails. ASSERT_THAT(SubmitCtx(old_ctx, 1, cbs), SyscallFailsWithErrno(EINVAL)); // Submit the request with the new 'ctx_'. ASSERT_THAT(Submit(1, cbs), SyscallSucceedsWithValue(1)); // Remap again. dst = ASSERT_NO_ERRNO_AND_VALUE(MmapAnon(ctx_size, PROT_READ, MAP_PRIVATE)); ASSERT_THAT(Mremap(reinterpret_cast<void*>(ctx_), ctx_size, dst.len(), MREMAP_FIXED | MREMAP_MAYMOVE, dst.ptr()), IsPosixErrorOkAndHolds(dst.ptr())); ctx_ = reinterpret_cast<aio_context_t>(dst.addr()); dst.release(); // Get the reply with yet another 'ctx_' and verify it. struct io_event events[1]; ASSERT_THAT(GetEvents(1, 1, events, nullptr), SyscallSucceedsWithValue(1)); EXPECT_EQ(events[0].data, 0x123); EXPECT_EQ(events[0].obj, reinterpret_cast<long>(&cb)); EXPECT_EQ(events[0].res, strlen(kData)); // Verify that the file contains the contents. char verify_buf[sizeof(kData)] = {}; ASSERT_THAT(read(test_file_fd_.get(), verify_buf, sizeof(kData)), SyscallSucceedsWithValue(strlen(kData))); EXPECT_STREQ(verify_buf, kData); } // Tests that AIO context cannot be expanded with mremap. TEST_F(AIOTest, MremapExpansion) { // Setup a context that is 128 entries deep. ASSERT_THAT(SetupContext(128), SyscallSucceeds()); const size_t ctx_size = ASSERT_NO_ERRNO_AND_VALUE(VmaSizeAt(reinterpret_cast<uintptr_t>(ctx_))); // Reserve address space for the mremap target so we have something safe to // map over. Mapping dst = ASSERT_NO_ERRNO_AND_VALUE( MmapAnon(ctx_size + kPageSize, PROT_NONE, MAP_PRIVATE)); // Test that remapping to a larger address range fails. ASSERT_THAT(Mremap(reinterpret_cast<void*>(ctx_), ctx_size, dst.len(), MREMAP_FIXED | MREMAP_MAYMOVE, dst.ptr()), PosixErrorIs(EFAULT, _)); // mm/mremap.c:sys_mremap() => mremap_to() does do_munmap() of the destination // before it hits the VM_DONTEXPAND check in vma_to_resize(), so we should no // longer munmap it (another thread may have created a mapping there). dst.release(); } // Tests that AIO calls fail if context's address is inaccessible. TEST_F(AIOTest, Mprotect) { // Setup a context that is 128 entries deep. ASSERT_THAT(SetupContext(128), SyscallSucceeds()); struct iocb cb = CreateCallback(); struct iocb* cbs[1] = {&cb}; ASSERT_THAT(Submit(1, cbs), SyscallSucceedsWithValue(1)); // Makes the context 'handle' inaccessible and check that all subsequent // calls fail. ASSERT_THAT(mprotect(reinterpret_cast<void*>(ctx_), kPageSize, PROT_NONE), SyscallSucceeds()); struct io_event events[1]; EXPECT_THAT(GetEvents(1, 1, events, nullptr), SyscallFailsWithErrno(EINVAL)); ASSERT_THAT(Submit(1, cbs), SyscallFailsWithErrno(EINVAL)); EXPECT_THAT(DestroyContext(), SyscallFailsWithErrno(EINVAL)); // Prevent TearDown from attempting to destroy the context and fail. ctx_ = 0; } TEST_F(AIOTest, Timeout) { // Setup a context that is 128 entries deep. ASSERT_THAT(SetupContext(128), SyscallSucceeds()); struct timespec timeout; timeout.tv_sec = 0; timeout.tv_nsec = 10; struct io_event events[1]; ASSERT_THAT(GetEvents(1, 1, events, &timeout), SyscallSucceedsWithValue(0)); } class AIOReadWriteParamTest : public AIOTest, public ::testing::WithParamInterface<int> {}; TEST_P(AIOReadWriteParamTest, BadOffset) { // Setup a context that is 128 entries deep. ASSERT_THAT(SetupContext(128), SyscallSucceeds()); struct iocb cb = CreateCallback(); struct iocb* cbs[1] = {&cb}; // Create a buffer that we can write to. char buf[] = "hello world!"; cb.aio_buf = reinterpret_cast<uint64_t>(buf); // Set the operation on the callback and give a negative offset. const int opcode = GetParam(); cb.aio_lio_opcode = opcode; iovec iov = {}; if (opcode == IOCB_CMD_PREADV || opcode == IOCB_CMD_PWRITEV) { // Create a valid iovec and set it in the callback. iov.iov_base = reinterpret_cast<void*>(buf); iov.iov_len = 1; cb.aio_buf = reinterpret_cast<uint64_t>(&iov); // aio_nbytes is the number of iovecs. cb.aio_nbytes = 1; } // Pass a negative offset. cb.aio_offset = -1; // Should get error on submission. ASSERT_THAT(Submit(1, cbs), SyscallFailsWithErrno(EINVAL)); } INSTANTIATE_TEST_SUITE_P(BadOffset, AIOReadWriteParamTest, ::testing::Values(IOCB_CMD_PREAD, IOCB_CMD_PWRITE, IOCB_CMD_PREADV, IOCB_CMD_PWRITEV)); class AIOVectorizedParamTest : public AIOTest, public ::testing::WithParamInterface<int> {}; TEST_P(AIOVectorizedParamTest, BadIOVecs) { // Setup a context that is 128 entries deep. ASSERT_THAT(SetupContext(128), SyscallSucceeds()); struct iocb cb = CreateCallback(); struct iocb* cbs[1] = {&cb}; // Modify the callback to use the operation from the param. cb.aio_lio_opcode = GetParam(); // Create an iovec with address in kernel range, and pass that as the buffer. iovec iov = {}; iov.iov_base = reinterpret_cast<void*>(0xFFFFFFFF00000000); iov.iov_len = 1; cb.aio_buf = reinterpret_cast<uint64_t>(&iov); // aio_nbytes is the number of iovecs. cb.aio_nbytes = 1; // Should get error on submission. ASSERT_THAT(Submit(1, cbs), SyscallFailsWithErrno(EFAULT)); } INSTANTIATE_TEST_SUITE_P(BadIOVecs, AIOVectorizedParamTest, ::testing::Values(IOCB_CMD_PREADV, IOCB_CMD_PWRITEV)); } // namespace } // namespace testing } // namespace gvisor