// Copyright 2021 The gVisor Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package mitigate import ( "fmt" "io/ioutil" "regexp" "strconv" "strings" ) const ( // mds is the only bug we care about. mds = "mds" // Constants for parsing /proc/cpuinfo. processorKey = "processor" vendorIDKey = "vendor_id" cpuFamilyKey = "cpu family" modelKey = "model" physicalIDKey = "physical id" coreIDKey = "core id" bugsKey = "bugs" // Path to shutdown a CPU. cpuOnlineTemplate = "/sys/devices/system/cpu/cpu%d/online" ) // cpuSet contains a map of all CPUs on the system, mapped // by Physical ID and CoreIDs. threads with the same // Core and Physical ID are Hyperthread pairs. type cpuSet map[cpuID]*threadGroup // newCPUSet creates a CPUSet from data read from /proc/cpuinfo. func newCPUSet(data []byte, vulnerable func(thread) bool) (cpuSet, error) { processors, err := getThreads(string(data)) if err != nil { return nil, err } set := make(cpuSet) for _, p := range processors { // Each ID is of the form physicalID:coreID. Hyperthread pairs // have identical physical and core IDs. We need to match // Hyperthread pairs so that we can shutdown all but one per // pair. core, ok := set[p.id] if !ok { core = &threadGroup{} set[p.id] = core } core.isVulnerable = core.isVulnerable || vulnerable(p) core.threads = append(core.threads, p) } return set, nil } // newCPUSetFromPossible makes a cpuSet data read from // /sys/devices/system/cpu/possible. This is used in enable operations // where the caller simply wants to enable all CPUS. func newCPUSetFromPossible(data []byte) (cpuSet, error) { threads, err := getThreadsFromPossible(data) if err != nil { return nil, err } // We don't care if a CPU is vulnerable or not, we just // want to return a list of all CPUs on the host. set := cpuSet{ threads[0].id: &threadGroup{ threads: threads, isVulnerable: false, }, } return set, nil } // String implements the String method for CPUSet. func (c cpuSet) String() string { ret := "" for _, tg := range c { ret += fmt.Sprintf("%s\n", tg) } return ret } // getRemainingList returns the list of threads that will remain active // after mitigation. func (c cpuSet) getRemainingList() []thread { threads := make([]thread, 0, len(c)) for _, core := range c { // If we're vulnerable, take only one thread from the pair. if core.isVulnerable { threads = append(threads, core.threads[0]) continue } // Otherwise don't shutdown anything. threads = append(threads, core.threads...) } return threads } // getShutdownList returns the list of threads that will be shutdown on // mitigation. func (c cpuSet) getShutdownList() []thread { threads := make([]thread, 0) for _, core := range c { // Only if we're vulnerable do shutdown anything. In this case, // shutdown all but the first entry. if core.isVulnerable && len(core.threads) > 1 { threads = append(threads, core.threads[1:]...) } } return threads } // threadGroup represents Hyperthread pairs on the same physical/core ID. type threadGroup struct { threads []thread isVulnerable bool } // String implements the String method for threadGroup. func (c threadGroup) String() string { ret := fmt.Sprintf("ThreadGroup:\nIsVulnerable: %t\n", c.isVulnerable) for _, processor := range c.threads { ret += fmt.Sprintf("%s\n", processor) } return ret } // getThreads returns threads structs from reading /proc/cpuinfo. func getThreads(data string) ([]thread, error) { // Each processor entry should start with the // processor key. Find the beginings of each. r := buildRegex(processorKey, `\d+`) indices := r.FindAllStringIndex(data, -1) if len(indices) < 1 { return nil, fmt.Errorf("no cpus found for: %q", data) } // Add the ending index for last entry. indices = append(indices, []int{len(data), -1}) // Valid cpus are now defined by strings in between // indexes (e.g. data[index[i], index[i+1]]). // There should be len(indicies) - 1 CPUs // since the last index is the end of the string. cpus := make([]thread, 0, len(indices)) // Find each string that represents a CPU. These begin "processor". for i := 1; i < len(indices); i++ { start := indices[i-1][0] end := indices[i][0] // Parse the CPU entry, which should be between start/end. c, err := newThread(data[start:end]) if err != nil { return nil, err } cpus = append(cpus, c) } return cpus, nil } // getThreadsFromPossible makes threads from data read from /sys/devices/system/cpu/possible. func getThreadsFromPossible(data []byte) ([]thread, error) { possibleRegex := regexp.MustCompile(`(?m)^(\d+)(-(\d+))?$`) matches := possibleRegex.FindStringSubmatch(string(data)) if len(matches) != 4 { return nil, fmt.Errorf("mismatch regex from %s: %q", allPossibleCPUs, string(data)) } // If matches[3] is empty, we only have one cpu entry. if matches[3] == "" { matches[3] = matches[1] } begin, err := strconv.ParseInt(matches[1], 10, 64) if err != nil { return nil, fmt.Errorf("failed to parse begin: %v", err) } end, err := strconv.ParseInt(matches[3], 10, 64) if err != nil { return nil, fmt.Errorf("failed to parse end: %v", err) } if begin > end || begin < 0 || end < 0 { return nil, fmt.Errorf("invalid cpu bounds from possible: begin: %d end: %d", begin, end) } ret := make([]thread, 0, end-begin) for i := begin; i <= end; i++ { ret = append(ret, thread{ processorNumber: i, id: cpuID{ physicalID: 0, // we don't care about id for enable ops. coreID: 0, }, }) } return ret, nil } // cpuID for each thread is defined by the physical and // core IDs. If equal, two threads are Hyperthread pairs. type cpuID struct { physicalID int64 coreID int64 } // type cpu represents pertinent info about a cpu. type thread struct { processorNumber int64 // the processor number of this CPU. vendorID string // the vendorID of CPU (e.g. AuthenticAMD). cpuFamily int64 // CPU family number (e.g. 6 for CascadeLake/Skylake). model int64 // CPU model number (e.g. 85 for CascadeLake/Skylake). id cpuID // id for this thread bugs map[string]struct{} // map of vulnerabilities parsed from the 'bugs' field. } // newThread parses a CPU from a single cpu entry from /proc/cpuinfo. func newThread(data string) (thread, error) { empty := thread{} processor, err := parseProcessor(data) if err != nil { return empty, err } vendorID, err := parseVendorID(data) if err != nil { return empty, err } cpuFamily, err := parseCPUFamily(data) if err != nil { return empty, err } model, err := parseModel(data) if err != nil { return empty, err } physicalID, err := parsePhysicalID(data) if err != nil { return empty, err } coreID, err := parseCoreID(data) if err != nil { return empty, err } bugs, err := parseBugs(data) if err != nil { return empty, err } return thread{ processorNumber: processor, vendorID: vendorID, cpuFamily: cpuFamily, model: model, id: cpuID{ physicalID: physicalID, coreID: coreID, }, bugs: bugs, }, nil } // String implements the String method for thread. func (t thread) String() string { template := `CPU: %d CPU ID: %+v Vendor: %s Family/Model: %d/%d Bugs: %s ` bugs := make([]string, 0) for bug := range t.bugs { bugs = append(bugs, bug) } return fmt.Sprintf(template, t.processorNumber, t.id, t.vendorID, t.cpuFamily, t.model, strings.Join(bugs, ",")) } // enable turns on the CPU by writing 1 to /sys/devices/cpu/cpu{N}/online. func (t thread) enable() error { cpuPath := fmt.Sprintf(cpuOnlineTemplate, t.processorNumber) return ioutil.WriteFile(cpuPath, []byte{'1'}, 0644) } // disable turns off the CPU by writing 0 to /sys/devices/cpu/cpu{N}/online. func (t thread) disable() error { cpuPath := fmt.Sprintf(cpuOnlineTemplate, t.processorNumber) return ioutil.WriteFile(cpuPath, []byte{'0'}, 0644) } // isVulnerable checks if a CPU is vulnerable to mds. func (t thread) isVulnerable() bool { _, ok := t.bugs[mds] return ok } // isActive checks if a CPU is active from /sys/devices/system/cpu/cpu{N}/online // If the file does not exist (ioutil returns in error), we assume the CPU is on. func (t thread) isActive() bool { cpuPath := fmt.Sprintf(cpuOnlineTemplate, t.processorNumber) data, err := ioutil.ReadFile(cpuPath) if err != nil { return true } return len(data) > 0 && data[0] != '0' } // similarTo checks family/model/bugs fields for equality of two // processors. func (t thread) similarTo(other thread) bool { if t.vendorID != other.vendorID { return false } if other.cpuFamily != t.cpuFamily { return false } if other.model != t.model { return false } if len(other.bugs) != len(t.bugs) { return false } for bug := range t.bugs { if _, ok := other.bugs[bug]; !ok { return false } } return true } // parseProcessor grabs the processor field from /proc/cpuinfo output. func parseProcessor(data string) (int64, error) { return parseIntegerResult(data, processorKey) } // parseVendorID grabs the vendor_id field from /proc/cpuinfo output. func parseVendorID(data string) (string, error) { return parseRegex(data, vendorIDKey, `[\w\d]+`) } // parseCPUFamily grabs the cpu family field from /proc/cpuinfo output. func parseCPUFamily(data string) (int64, error) { return parseIntegerResult(data, cpuFamilyKey) } // parseModel grabs the model field from /proc/cpuinfo output. func parseModel(data string) (int64, error) { return parseIntegerResult(data, modelKey) } // parsePhysicalID parses the physical id field. func parsePhysicalID(data string) (int64, error) { return parseIntegerResult(data, physicalIDKey) } // parseCoreID parses the core id field. func parseCoreID(data string) (int64, error) { return parseIntegerResult(data, coreIDKey) } // parseBugs grabs the bugs field from /proc/cpuinfo output. func parseBugs(data string) (map[string]struct{}, error) { result, err := parseRegex(data, bugsKey, `[\d\w\s]*`) if err != nil { return nil, err } bugs := strings.Split(result, " ") ret := make(map[string]struct{}, len(bugs)) for _, bug := range bugs { ret[bug] = struct{}{} } return ret, nil } // parseIntegerResult parses fields expecting an integer. func parseIntegerResult(data, key string) (int64, error) { result, err := parseRegex(data, key, `\d+`) if err != nil { return 0, err } return strconv.ParseInt(result, 0, 64) } // buildRegex builds a regex for parsing each CPU field. func buildRegex(key, match string) *regexp.Regexp { reg := fmt.Sprintf(`(?m)^%s\s*:\s*(.*)$`, key) return regexp.MustCompile(reg) } // parseRegex parses data with key inserted into a standard regex template. func parseRegex(data, key, match string) (string, error) { r := buildRegex(key, match) matches := r.FindStringSubmatch(data) if len(matches) < 2 { return "", fmt.Errorf("failed to match key %q: %q", key, data) } return matches[1], nil }