// Copyright 2019 The gVisor Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Package raw provides the implementation of raw sockets (see raw(7)). Raw // sockets allow applications to: // // * manually write and inspect transport layer headers and payloads // * receive all traffic of a given transport protocol (e.g. ICMP or UDP) // * optionally write and inspect network layer headers of packets // // Raw sockets don't have any notion of ports, and incoming packets are // demultiplexed solely by protocol number. Thus, a raw UDP endpoint will // receive every UDP packet received by netstack. bind(2) and connect(2) can be // used to filter incoming packets by source and destination. package raw import ( "sync" "gvisor.dev/gvisor/pkg/tcpip" "gvisor.dev/gvisor/pkg/tcpip/buffer" "gvisor.dev/gvisor/pkg/tcpip/header" "gvisor.dev/gvisor/pkg/tcpip/iptables" "gvisor.dev/gvisor/pkg/tcpip/stack" "gvisor.dev/gvisor/pkg/waiter" ) // +stateify savable type rawPacket struct { rawPacketEntry // data holds the actual packet data, including any headers and // payload. data buffer.VectorisedView `state:".(buffer.VectorisedView)"` // timestampNS is the unix time at which the packet was received. timestampNS int64 // senderAddr is the network address of the sender. senderAddr tcpip.FullAddress } // endpoint is the raw socket implementation of tcpip.Endpoint. It is legal to // have goroutines make concurrent calls into the endpoint. // // Lock order: // endpoint.mu // endpoint.rcvMu // // +stateify savable type endpoint struct { stack.TransportEndpointInfo // The following fields are initialized at creation time and are // immutable. stack *stack.Stack `state:"manual"` waiterQueue *waiter.Queue associated bool // The following fields are used to manage the receive queue and are // protected by rcvMu. rcvMu sync.Mutex `state:"nosave"` rcvList rawPacketList rcvBufSizeMax int `state:".(int)"` rcvBufSize int rcvClosed bool // The following fields are protected by mu. mu sync.RWMutex `state:"nosave"` sndBufSize int closed bool connected bool bound bool // route is the route to a remote network endpoint. It is set via // Connect(), and is valid only when conneted is true. route stack.Route `state:"manual"` stats tcpip.TransportEndpointStats `state:"nosave"` } // NewEndpoint returns a raw endpoint for the given protocols. func NewEndpoint(stack *stack.Stack, netProto tcpip.NetworkProtocolNumber, transProto tcpip.TransportProtocolNumber, waiterQueue *waiter.Queue) (tcpip.Endpoint, *tcpip.Error) { return newEndpoint(stack, netProto, transProto, waiterQueue, true /* associated */) } func newEndpoint(s *stack.Stack, netProto tcpip.NetworkProtocolNumber, transProto tcpip.TransportProtocolNumber, waiterQueue *waiter.Queue, associated bool) (tcpip.Endpoint, *tcpip.Error) { if netProto != header.IPv4ProtocolNumber { return nil, tcpip.ErrUnknownProtocol } e := &endpoint{ stack: s, TransportEndpointInfo: stack.TransportEndpointInfo{ NetProto: netProto, TransProto: transProto, }, waiterQueue: waiterQueue, rcvBufSizeMax: 32 * 1024, sndBufSize: 32 * 1024, associated: associated, } // Unassociated endpoints are write-only and users call Write() with IP // headers included. Because they're write-only, We don't need to // register with the stack. if !associated { e.rcvBufSizeMax = 0 e.waiterQueue = nil return e, nil } if err := e.stack.RegisterRawTransportEndpoint(e.RegisterNICID, e.NetProto, e.TransProto, e); err != nil { return nil, err } return e, nil } // Close implements tcpip.Endpoint.Close. func (e *endpoint) Close() { e.mu.Lock() defer e.mu.Unlock() if e.closed || !e.associated { return } e.stack.UnregisterRawTransportEndpoint(e.RegisterNICID, e.NetProto, e.TransProto, e) e.rcvMu.Lock() defer e.rcvMu.Unlock() // Clear the receive list. e.rcvClosed = true e.rcvBufSize = 0 for !e.rcvList.Empty() { e.rcvList.Remove(e.rcvList.Front()) } if e.connected { e.route.Release() e.connected = false } e.closed = true e.waiterQueue.Notify(waiter.EventHUp | waiter.EventErr | waiter.EventIn | waiter.EventOut) } // ModerateRecvBuf implements tcpip.Endpoint.ModerateRecvBuf. func (e *endpoint) ModerateRecvBuf(copied int) {} // IPTables implements tcpip.Endpoint.IPTables. func (e *endpoint) IPTables() (iptables.IPTables, error) { return e.stack.IPTables(), nil } // Read implements tcpip.Endpoint.Read. func (e *endpoint) Read(addr *tcpip.FullAddress) (buffer.View, tcpip.ControlMessages, *tcpip.Error) { if !e.associated { return buffer.View{}, tcpip.ControlMessages{}, tcpip.ErrInvalidOptionValue } e.rcvMu.Lock() // If there's no data to read, return that read would block or that the // endpoint is closed. if e.rcvList.Empty() { err := tcpip.ErrWouldBlock if e.rcvClosed { e.stats.ReadErrors.ReadClosed.Increment() err = tcpip.ErrClosedForReceive } e.rcvMu.Unlock() return buffer.View{}, tcpip.ControlMessages{}, err } pkt := e.rcvList.Front() e.rcvList.Remove(pkt) e.rcvBufSize -= pkt.data.Size() e.rcvMu.Unlock() if addr != nil { *addr = pkt.senderAddr } return pkt.data.ToView(), tcpip.ControlMessages{HasTimestamp: true, Timestamp: pkt.timestampNS}, nil } // Write implements tcpip.Endpoint.Write. func (e *endpoint) Write(p tcpip.Payloader, opts tcpip.WriteOptions) (int64, <-chan struct{}, *tcpip.Error) { n, ch, err := e.write(p, opts) switch err { case nil: e.stats.PacketsSent.Increment() case tcpip.ErrMessageTooLong, tcpip.ErrInvalidOptionValue: e.stats.WriteErrors.InvalidArgs.Increment() case tcpip.ErrClosedForSend: e.stats.WriteErrors.WriteClosed.Increment() case tcpip.ErrInvalidEndpointState: e.stats.WriteErrors.InvalidEndpointState.Increment() case tcpip.ErrNoLinkAddress: e.stats.SendErrors.NoLinkAddr.Increment() case tcpip.ErrNoRoute, tcpip.ErrBroadcastDisabled, tcpip.ErrNetworkUnreachable: // Errors indicating any problem with IP routing of the packet. e.stats.SendErrors.NoRoute.Increment() default: // For all other errors when writing to the network layer. e.stats.SendErrors.SendToNetworkFailed.Increment() } return n, ch, err } func (e *endpoint) write(p tcpip.Payloader, opts tcpip.WriteOptions) (int64, <-chan struct{}, *tcpip.Error) { // MSG_MORE is unimplemented. This also means that MSG_EOR is a no-op. if opts.More { return 0, nil, tcpip.ErrInvalidOptionValue } e.mu.RLock() if e.closed { e.mu.RUnlock() return 0, nil, tcpip.ErrInvalidEndpointState } payloadBytes, err := p.FullPayload() if err != nil { e.mu.RUnlock() return 0, nil, err } // If this is an unassociated socket and callee provided a nonzero // destination address, route using that address. if !e.associated { ip := header.IPv4(payloadBytes) if !ip.IsValid(len(payloadBytes)) { e.mu.RUnlock() return 0, nil, tcpip.ErrInvalidOptionValue } dstAddr := ip.DestinationAddress() // Update dstAddr with the address in the IP header, unless // opts.To is set (e.g. if sendto specifies a specific // address). if dstAddr != tcpip.Address([]byte{0, 0, 0, 0}) && opts.To == nil { opts.To = &tcpip.FullAddress{ NIC: 0, // NIC is unset. Addr: dstAddr, // The address from the payload. Port: 0, // There are no ports here. } } } // Did the user caller provide a destination? If not, use the connected // destination. if opts.To == nil { // If the user doesn't specify a destination, they should have // connected to another address. if !e.connected { e.mu.RUnlock() return 0, nil, tcpip.ErrDestinationRequired } if e.route.IsResolutionRequired() { savedRoute := &e.route // Promote lock to exclusive if using a shared route, // given that it may need to change in finishWrite. e.mu.RUnlock() e.mu.Lock() // Make sure that the route didn't change during the // time we didn't hold the lock. if !e.connected || savedRoute != &e.route { e.mu.Unlock() return 0, nil, tcpip.ErrInvalidEndpointState } n, ch, err := e.finishWrite(payloadBytes, savedRoute) e.mu.Unlock() return n, ch, err } n, ch, err := e.finishWrite(payloadBytes, &e.route) e.mu.RUnlock() return n, ch, err } // The caller provided a destination. Reject destination address if it // goes through a different NIC than the endpoint was bound to. nic := opts.To.NIC if e.bound && nic != 0 && nic != e.BindNICID { e.mu.RUnlock() return 0, nil, tcpip.ErrNoRoute } // We don't support IPv6 yet, so this has to be an IPv4 address. if len(opts.To.Addr) != header.IPv4AddressSize { e.mu.RUnlock() return 0, nil, tcpip.ErrInvalidEndpointState } // Find the route to the destination. If BindAddress is 0, // FindRoute will choose an appropriate source address. route, err := e.stack.FindRoute(nic, e.BindAddr, opts.To.Addr, e.NetProto, false) if err != nil { e.mu.RUnlock() return 0, nil, err } n, ch, err := e.finishWrite(payloadBytes, &route) route.Release() e.mu.RUnlock() return n, ch, err } // finishWrite writes the payload to a route. It resolves the route if // necessary. It's really just a helper to make defer unnecessary in Write. func (e *endpoint) finishWrite(payloadBytes []byte, route *stack.Route) (int64, <-chan struct{}, *tcpip.Error) { // We may need to resolve the route (match a link layer address to the // network address). If that requires blocking (e.g. to use ARP), // return a channel on which the caller can wait. if route.IsResolutionRequired() { if ch, err := route.Resolve(nil); err != nil { if err == tcpip.ErrWouldBlock { return 0, ch, tcpip.ErrNoLinkAddress } return 0, nil, err } } switch e.NetProto { case header.IPv4ProtocolNumber: if !e.associated { if err := route.WriteHeaderIncludedPacket(buffer.View(payloadBytes).ToVectorisedView()); err != nil { return 0, nil, err } break } hdr := buffer.NewPrependable(len(payloadBytes) + int(route.MaxHeaderLength())) if err := route.WritePacket(nil /* gso */, hdr, buffer.View(payloadBytes).ToVectorisedView(), stack.NetworkHeaderParams{Protocol: e.TransProto, TTL: route.DefaultTTL(), TOS: stack.DefaultTOS}); err != nil { return 0, nil, err } default: return 0, nil, tcpip.ErrUnknownProtocol } return int64(len(payloadBytes)), nil, nil } // Peek implements tcpip.Endpoint.Peek. func (e *endpoint) Peek([][]byte) (int64, tcpip.ControlMessages, *tcpip.Error) { return 0, tcpip.ControlMessages{}, nil } // Disconnect implements tcpip.Endpoint.Disconnect. func (*endpoint) Disconnect() *tcpip.Error { return tcpip.ErrNotSupported } // Connect implements tcpip.Endpoint.Connect. func (e *endpoint) Connect(addr tcpip.FullAddress) *tcpip.Error { e.mu.Lock() defer e.mu.Unlock() if e.closed { return tcpip.ErrInvalidEndpointState } // We don't support IPv6 yet. if len(addr.Addr) != header.IPv4AddressSize { return tcpip.ErrInvalidEndpointState } nic := addr.NIC if e.bound { if e.BindNICID == 0 { // If we're bound, but not to a specific NIC, the NIC // in addr will be used. Nothing to do here. } else if addr.NIC == 0 { // If we're bound to a specific NIC, but addr doesn't // specify a NIC, use the bound NIC. nic = e.BindNICID } else if addr.NIC != e.BindNICID { // We're bound and addr specifies a NIC. They must be // the same. return tcpip.ErrInvalidEndpointState } } // Find a route to the destination. route, err := e.stack.FindRoute(nic, tcpip.Address(""), addr.Addr, e.NetProto, false) if err != nil { return err } defer route.Release() if e.associated { // Re-register the endpoint with the appropriate NIC. if err := e.stack.RegisterRawTransportEndpoint(addr.NIC, e.NetProto, e.TransProto, e); err != nil { return err } e.stack.UnregisterRawTransportEndpoint(e.RegisterNICID, e.NetProto, e.TransProto, e) e.RegisterNICID = nic } // Save the route we've connected via. e.route = route.Clone() e.connected = true return nil } // Shutdown implements tcpip.Endpoint.Shutdown. It's a noop for raw sockets. func (e *endpoint) Shutdown(flags tcpip.ShutdownFlags) *tcpip.Error { e.mu.Lock() defer e.mu.Unlock() if !e.connected { return tcpip.ErrNotConnected } return nil } // Listen implements tcpip.Endpoint.Listen. func (e *endpoint) Listen(backlog int) *tcpip.Error { return tcpip.ErrNotSupported } // Accept implements tcpip.Endpoint.Accept. func (e *endpoint) Accept() (tcpip.Endpoint, *waiter.Queue, *tcpip.Error) { return nil, nil, tcpip.ErrNotSupported } // Bind implements tcpip.Endpoint.Bind. func (e *endpoint) Bind(addr tcpip.FullAddress) *tcpip.Error { e.mu.Lock() defer e.mu.Unlock() // Callers must provide an IPv4 address or no network address (for // binding to a NIC, but not an address). if len(addr.Addr) != 0 && len(addr.Addr) != 4 { return tcpip.ErrInvalidEndpointState } // If a local address was specified, verify that it's valid. if len(addr.Addr) == header.IPv4AddressSize && e.stack.CheckLocalAddress(addr.NIC, e.NetProto, addr.Addr) == 0 { return tcpip.ErrBadLocalAddress } if e.associated { // Re-register the endpoint with the appropriate NIC. if err := e.stack.RegisterRawTransportEndpoint(addr.NIC, e.NetProto, e.TransProto, e); err != nil { return err } e.stack.UnregisterRawTransportEndpoint(e.RegisterNICID, e.NetProto, e.TransProto, e) e.RegisterNICID = addr.NIC e.BindNICID = addr.NIC } e.BindAddr = addr.Addr e.bound = true return nil } // GetLocalAddress implements tcpip.Endpoint.GetLocalAddress. func (e *endpoint) GetLocalAddress() (tcpip.FullAddress, *tcpip.Error) { return tcpip.FullAddress{}, tcpip.ErrNotSupported } // GetRemoteAddress implements tcpip.Endpoint.GetRemoteAddress. func (e *endpoint) GetRemoteAddress() (tcpip.FullAddress, *tcpip.Error) { // Even a connected socket doesn't return a remote address. return tcpip.FullAddress{}, tcpip.ErrNotConnected } // Readiness implements tcpip.Endpoint.Readiness. func (e *endpoint) Readiness(mask waiter.EventMask) waiter.EventMask { // The endpoint is always writable. result := waiter.EventOut & mask // Determine whether the endpoint is readable. if (mask & waiter.EventIn) != 0 { e.rcvMu.Lock() if !e.rcvList.Empty() || e.rcvClosed { result |= waiter.EventIn } e.rcvMu.Unlock() } return result } // SetSockOpt implements tcpip.Endpoint.SetSockOpt. func (e *endpoint) SetSockOpt(opt interface{}) *tcpip.Error { return tcpip.ErrUnknownProtocolOption } // SetSockOptInt implements tcpip.Endpoint.SetSockOptInt. func (ep *endpoint) SetSockOptInt(opt tcpip.SockOpt, v int) *tcpip.Error { return tcpip.ErrUnknownProtocolOption } // GetSockOptInt implements tcpip.Endpoint.GetSockOptInt. func (e *endpoint) GetSockOptInt(opt tcpip.SockOpt) (int, *tcpip.Error) { switch opt { case tcpip.ReceiveQueueSizeOption: v := 0 e.rcvMu.Lock() if !e.rcvList.Empty() { p := e.rcvList.Front() v = p.data.Size() } e.rcvMu.Unlock() return v, nil case tcpip.SendBufferSizeOption: e.mu.Lock() v := e.sndBufSize e.mu.Unlock() return v, nil case tcpip.ReceiveBufferSizeOption: e.rcvMu.Lock() v := e.rcvBufSizeMax e.rcvMu.Unlock() return v, nil } return -1, tcpip.ErrUnknownProtocolOption } // GetSockOpt implements tcpip.Endpoint.GetSockOpt. func (e *endpoint) GetSockOpt(opt interface{}) *tcpip.Error { switch o := opt.(type) { case tcpip.ErrorOption: return nil case *tcpip.KeepaliveEnabledOption: *o = 0 return nil default: return tcpip.ErrUnknownProtocolOption } } // HandlePacket implements stack.RawTransportEndpoint.HandlePacket. func (e *endpoint) HandlePacket(route *stack.Route, pkt tcpip.PacketBuffer) { e.rcvMu.Lock() // Drop the packet if our buffer is currently full. if e.rcvClosed { e.rcvMu.Unlock() e.stack.Stats().DroppedPackets.Increment() e.stats.ReceiveErrors.ClosedReceiver.Increment() return } if e.rcvBufSize >= e.rcvBufSizeMax { e.rcvMu.Unlock() e.stack.Stats().DroppedPackets.Increment() e.stats.ReceiveErrors.ReceiveBufferOverflow.Increment() return } if e.bound { // If bound to a NIC, only accept data for that NIC. if e.BindNICID != 0 && e.BindNICID != route.NICID() { e.rcvMu.Unlock() return } // If bound to an address, only accept data for that address. if e.BindAddr != "" && e.BindAddr != route.RemoteAddress { e.rcvMu.Unlock() return } } // If connected, only accept packets from the remote address we // connected to. if e.connected && e.route.RemoteAddress != route.RemoteAddress { e.rcvMu.Unlock() return } wasEmpty := e.rcvBufSize == 0 // Push new packet into receive list and increment the buffer size. packet := &rawPacket{ senderAddr: tcpip.FullAddress{ NIC: route.NICID(), Addr: route.RemoteAddress, }, } networkHeader := append(buffer.View(nil), pkt.NetworkHeader...) combinedVV := networkHeader.ToVectorisedView() combinedVV.Append(pkt.Data) packet.data = combinedVV packet.timestampNS = e.stack.NowNanoseconds() e.rcvList.PushBack(packet) e.rcvBufSize += packet.data.Size() e.rcvMu.Unlock() e.stats.PacketsReceived.Increment() // Notify waiters that there's data to be read. if wasEmpty { e.waiterQueue.Notify(waiter.EventIn) } } // State implements socket.Socket.State. func (e *endpoint) State() uint32 { return 0 } // Info returns a copy of the endpoint info. func (e *endpoint) Info() tcpip.EndpointInfo { e.mu.RLock() // Make a copy of the endpoint info. ret := e.TransportEndpointInfo e.mu.RUnlock() return &ret } // Stats returns a pointer to the endpoint stats. func (e *endpoint) Stats() tcpip.EndpointStats { return &e.stats } // Wait implements stack.TransportEndpoint.Wait. func (*endpoint) Wait() {}