// Copyright 2020 The gVisor Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package tcpip_test import ( "sync" "testing" "time" "gvisor.dev/gvisor/pkg/tcpip" ) const ( shortDuration = 1 * time.Nanosecond middleDuration = 100 * time.Millisecond ) func TestJobReschedule(t *testing.T) { clock := tcpip.NewStdClock() var wg sync.WaitGroup var lock sync.Mutex for i := 0; i < 2; i++ { wg.Add(1) go func() { lock.Lock() // Assigning a new timer value updates the timer's locker and function. // This test makes sure there is no data race when reassigning a timer // that has an active timer (even if it has been stopped as a stopped // timer may be blocked on a lock before it can check if it has been // stopped while another goroutine holds the same lock). job := tcpip.NewJob(clock, &lock, func() { wg.Done() }) job.Schedule(shortDuration) lock.Unlock() }() } wg.Wait() } func TestJobExecution(t *testing.T) { t.Parallel() clock := tcpip.NewStdClock() var lock sync.Mutex ch := make(chan struct{}) job := tcpip.NewJob(clock, &lock, func() { ch <- struct{}{} }) job.Schedule(shortDuration) // Wait for timer to fire. select { case <-ch: case <-time.After(middleDuration): t.Fatal("timed out waiting for timer to fire") } // The timer should have fired only once. select { case <-ch: t.Fatal("no other timers should have fired") case <-time.After(middleDuration): } } func TestCancellableTimerResetFromLongDuration(t *testing.T) { t.Parallel() clock := tcpip.NewStdClock() var lock sync.Mutex ch := make(chan struct{}) job := tcpip.NewJob(clock, &lock, func() { ch <- struct{}{} }) job.Schedule(middleDuration) lock.Lock() job.Cancel() lock.Unlock() job.Schedule(shortDuration) // Wait for timer to fire. select { case <-ch: case <-time.After(middleDuration): t.Fatal("timed out waiting for timer to fire") } // The timer should have fired only once. select { case <-ch: t.Fatal("no other timers should have fired") case <-time.After(middleDuration): } } func TestJobRescheduleFromShortDuration(t *testing.T) { t.Parallel() clock := tcpip.NewStdClock() var lock sync.Mutex ch := make(chan struct{}) lock.Lock() job := tcpip.NewJob(clock, &lock, func() { ch <- struct{}{} }) job.Schedule(shortDuration) job.Cancel() lock.Unlock() // Wait for timer to fire if it wasn't correctly stopped. select { case <-ch: t.Fatal("timer fired after being stopped") case <-time.After(middleDuration): } job.Schedule(shortDuration) // Wait for timer to fire. select { case <-ch: case <-time.After(middleDuration): t.Fatal("timed out waiting for timer to fire") } // The timer should have fired only once. select { case <-ch: t.Fatal("no other timers should have fired") case <-time.After(middleDuration): } } func TestJobImmediatelyCancel(t *testing.T) { t.Parallel() clock := tcpip.NewStdClock() var lock sync.Mutex ch := make(chan struct{}) for i := 0; i < 1000; i++ { lock.Lock() job := tcpip.NewJob(clock, &lock, func() { ch <- struct{}{} }) job.Schedule(shortDuration) job.Cancel() lock.Unlock() } // Wait for timer to fire if it wasn't correctly stopped. select { case <-ch: t.Fatal("timer fired after being stopped") case <-time.After(middleDuration): } } func TestJobCancelledRescheduleWithoutLock(t *testing.T) { t.Parallel() clock := tcpip.NewStdClock() var lock sync.Mutex ch := make(chan struct{}) lock.Lock() job := tcpip.NewJob(clock, &lock, func() { ch <- struct{}{} }) job.Schedule(shortDuration) job.Cancel() lock.Unlock() for i := 0; i < 10; i++ { job.Schedule(middleDuration) lock.Lock() // Sleep until the timer fires and gets blocked trying to take the lock. time.Sleep(middleDuration * 2) job.Cancel() lock.Unlock() } // Wait for double the duration so timers that weren't correctly stopped can // fire. select { case <-ch: t.Fatal("timer fired after being stopped") case <-time.After(middleDuration * 2): } } func TestManyCancellableTimerResetAfterBlockedOnLock(t *testing.T) { t.Parallel() clock := tcpip.NewStdClock() var lock sync.Mutex ch := make(chan struct{}) lock.Lock() job := tcpip.NewJob(clock, &lock, func() { ch <- struct{}{} }) job.Schedule(shortDuration) for i := 0; i < 10; i++ { // Sleep until the timer fires and gets blocked trying to take the lock. time.Sleep(middleDuration) job.Cancel() job.Schedule(shortDuration) } lock.Unlock() // Wait for double the duration for the last timer to fire. select { case <-ch: case <-time.After(middleDuration): t.Fatal("timed out waiting for timer to fire") } // The timer should have fired only once. select { case <-ch: t.Fatal("no other timers should have fired") case <-time.After(middleDuration): } } func TestManyJobReschedulesUnderLock(t *testing.T) { t.Parallel() clock := tcpip.NewStdClock() var lock sync.Mutex ch := make(chan struct{}) lock.Lock() job := tcpip.NewJob(clock, &lock, func() { ch <- struct{}{} }) job.Schedule(shortDuration) for i := 0; i < 10; i++ { job.Cancel() job.Schedule(shortDuration) } lock.Unlock() // Wait for double the duration for the last timer to fire. select { case <-ch: case <-time.After(middleDuration): t.Fatal("timed out waiting for timer to fire") } // The timer should have fired only once. select { case <-ch: t.Fatal("no other timers should have fired") case <-time.After(middleDuration): } }