// Copyright 2018 The gVisor Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package stack import ( "container/heap" "fmt" "math/rand" "gvisor.dev/gvisor/pkg/sync" "gvisor.dev/gvisor/pkg/tcpip" "gvisor.dev/gvisor/pkg/tcpip/hash/jenkins" "gvisor.dev/gvisor/pkg/tcpip/header" ) type protocolIDs struct { network tcpip.NetworkProtocolNumber transport tcpip.TransportProtocolNumber } // transportEndpoints manages all endpoints of a given protocol. It has its own // mutex so as to reduce interference between protocols. type transportEndpoints struct { // mu protects all fields of the transportEndpoints. mu sync.RWMutex endpoints map[TransportEndpointID]*endpointsByNic // rawEndpoints contains endpoints for raw sockets, which receive all // traffic of a given protocol regardless of port. rawEndpoints []RawTransportEndpoint } // unregisterEndpoint unregisters the endpoint with the given id such that it // won't receive any more packets. func (eps *transportEndpoints) unregisterEndpoint(id TransportEndpointID, ep TransportEndpoint, bindToDevice tcpip.NICID) { eps.mu.Lock() defer eps.mu.Unlock() epsByNic, ok := eps.endpoints[id] if !ok { return } if !epsByNic.unregisterEndpoint(bindToDevice, ep) { return } delete(eps.endpoints, id) } func (eps *transportEndpoints) transportEndpoints() []TransportEndpoint { eps.mu.RLock() defer eps.mu.RUnlock() es := make([]TransportEndpoint, 0, len(eps.endpoints)) for _, e := range eps.endpoints { es = append(es, e.transportEndpoints()...) } return es } type endpointsByNic struct { mu sync.RWMutex endpoints map[tcpip.NICID]*multiPortEndpoint // seed is a random secret for a jenkins hash. seed uint32 } func (epsByNic *endpointsByNic) transportEndpoints() []TransportEndpoint { epsByNic.mu.RLock() defer epsByNic.mu.RUnlock() var eps []TransportEndpoint for _, ep := range epsByNic.endpoints { eps = append(eps, ep.transportEndpoints()...) } return eps } // HandlePacket is called by the stack when new packets arrive to this transport // endpoint. func (epsByNic *endpointsByNic) handlePacket(r *Route, id TransportEndpointID, pkt tcpip.PacketBuffer) { epsByNic.mu.RLock() mpep, ok := epsByNic.endpoints[r.ref.nic.ID()] if !ok { if mpep, ok = epsByNic.endpoints[0]; !ok { epsByNic.mu.RUnlock() // Don't use defer for performance reasons. return } } // If this is a broadcast or multicast datagram, deliver the datagram to all // endpoints bound to the right device. if isMulticastOrBroadcast(id.LocalAddress) { mpep.handlePacketAll(r, id, pkt) epsByNic.mu.RUnlock() // Don't use defer for performance reasons. return } // multiPortEndpoints are guaranteed to have at least one element. transEP := selectEndpoint(id, mpep, epsByNic.seed) if queuedProtocol, mustQueue := mpep.demux.queuedProtocols[protocolIDs{mpep.netProto, mpep.transProto}]; mustQueue { queuedProtocol.QueuePacket(r, transEP, id, pkt) epsByNic.mu.RUnlock() return } transEP.HandlePacket(r, id, pkt) epsByNic.mu.RUnlock() // Don't use defer for performance reasons. } // HandleControlPacket implements stack.TransportEndpoint.HandleControlPacket. func (epsByNic *endpointsByNic) handleControlPacket(n *NIC, id TransportEndpointID, typ ControlType, extra uint32, pkt tcpip.PacketBuffer) { epsByNic.mu.RLock() defer epsByNic.mu.RUnlock() mpep, ok := epsByNic.endpoints[n.ID()] if !ok { mpep, ok = epsByNic.endpoints[0] } if !ok { return } // TODO(eyalsoha): Why don't we look at id to see if this packet needs to // broadcast like we are doing with handlePacket above? // multiPortEndpoints are guaranteed to have at least one element. selectEndpoint(id, mpep, epsByNic.seed).HandleControlPacket(id, typ, extra, pkt) } // registerEndpoint returns true if it succeeds. It fails and returns // false if ep already has an element with the same key. func (epsByNic *endpointsByNic) registerEndpoint(d *transportDemuxer, netProto tcpip.NetworkProtocolNumber, transProto tcpip.TransportProtocolNumber, t TransportEndpoint, reusePort bool, bindToDevice tcpip.NICID) *tcpip.Error { epsByNic.mu.Lock() defer epsByNic.mu.Unlock() multiPortEp, ok := epsByNic.endpoints[bindToDevice] if !ok { multiPortEp = &multiPortEndpoint{ demux: d, netProto: netProto, transProto: transProto, reuse: reusePort, } epsByNic.endpoints[bindToDevice] = multiPortEp } return multiPortEp.singleRegisterEndpoint(t, reusePort) } // unregisterEndpoint returns true if endpointsByNic has to be unregistered. func (epsByNic *endpointsByNic) unregisterEndpoint(bindToDevice tcpip.NICID, t TransportEndpoint) bool { epsByNic.mu.Lock() defer epsByNic.mu.Unlock() multiPortEp, ok := epsByNic.endpoints[bindToDevice] if !ok { return false } if multiPortEp.unregisterEndpoint(t) { delete(epsByNic.endpoints, bindToDevice) } return len(epsByNic.endpoints) == 0 } // transportDemuxer demultiplexes packets targeted at a transport endpoint // (i.e., after they've been parsed by the network layer). It does two levels // of demultiplexing: first based on the network and transport protocols, then // based on endpoints IDs. It should only be instantiated via // newTransportDemuxer. type transportDemuxer struct { // protocol is immutable. protocol map[protocolIDs]*transportEndpoints queuedProtocols map[protocolIDs]queuedTransportProtocol } // queuedTransportProtocol if supported by a protocol implementation will cause // the dispatcher to delivery packets to the QueuePacket method instead of // calling HandlePacket directly on the endpoint. type queuedTransportProtocol interface { QueuePacket(r *Route, ep TransportEndpoint, id TransportEndpointID, pkt tcpip.PacketBuffer) } func newTransportDemuxer(stack *Stack) *transportDemuxer { d := &transportDemuxer{ protocol: make(map[protocolIDs]*transportEndpoints), queuedProtocols: make(map[protocolIDs]queuedTransportProtocol), } // Add each network and transport pair to the demuxer. for netProto := range stack.networkProtocols { for proto := range stack.transportProtocols { protoIDs := protocolIDs{netProto, proto} d.protocol[protoIDs] = &transportEndpoints{ endpoints: make(map[TransportEndpointID]*endpointsByNic), } qTransProto, isQueued := (stack.transportProtocols[proto].proto).(queuedTransportProtocol) if isQueued { d.queuedProtocols[protoIDs] = qTransProto } } } return d } // registerEndpoint registers the given endpoint with the dispatcher such that // packets that match the endpoint ID are delivered to it. func (d *transportDemuxer) registerEndpoint(netProtos []tcpip.NetworkProtocolNumber, protocol tcpip.TransportProtocolNumber, id TransportEndpointID, ep TransportEndpoint, reusePort bool, bindToDevice tcpip.NICID) *tcpip.Error { for i, n := range netProtos { if err := d.singleRegisterEndpoint(n, protocol, id, ep, reusePort, bindToDevice); err != nil { d.unregisterEndpoint(netProtos[:i], protocol, id, ep, bindToDevice) return err } } return nil } type transportEndpointHeap []TransportEndpoint var _ heap.Interface = (*transportEndpointHeap)(nil) func (h *transportEndpointHeap) Len() int { return len(*h) } func (h *transportEndpointHeap) Less(i, j int) bool { return (*h)[i].UniqueID() < (*h)[j].UniqueID() } func (h *transportEndpointHeap) Swap(i, j int) { (*h)[i], (*h)[j] = (*h)[j], (*h)[i] } func (h *transportEndpointHeap) Push(x interface{}) { *h = append(*h, x.(TransportEndpoint)) } func (h *transportEndpointHeap) Pop() interface{} { old := *h n := len(old) x := old[n-1] old[n-1] = nil *h = old[:n-1] return x } // multiPortEndpoint is a container for TransportEndpoints which are bound to // the same pair of address and port. endpointsArr always has at least one // element. // // FIXME(gvisor.dev/issue/873): Restore this properly. Currently, we just save // this to ensure that the underlying endpoints get saved/restored, but not not // use the restored copy. // // +stateify savable type multiPortEndpoint struct { mu sync.RWMutex `state:"nosave"` demux *transportDemuxer netProto tcpip.NetworkProtocolNumber transProto tcpip.TransportProtocolNumber endpoints transportEndpointHeap // reuse indicates if more than one endpoint is allowed. reuse bool } func (ep *multiPortEndpoint) transportEndpoints() []TransportEndpoint { ep.mu.RLock() eps := append([]TransportEndpoint(nil), ep.endpoints...) ep.mu.RUnlock() return eps } // reciprocalScale scales a value into range [0, n). // // This is similar to val % n, but faster. // See http://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/ func reciprocalScale(val, n uint32) uint32 { return uint32((uint64(val) * uint64(n)) >> 32) } // selectEndpoint calculates a hash of destination and source addresses and // ports then uses it to select a socket. In this case, all packets from one // address will be sent to same endpoint. func selectEndpoint(id TransportEndpointID, mpep *multiPortEndpoint, seed uint32) TransportEndpoint { if len(mpep.endpoints) == 1 { return mpep.endpoints[0] } payload := []byte{ byte(id.LocalPort), byte(id.LocalPort >> 8), byte(id.RemotePort), byte(id.RemotePort >> 8), } h := jenkins.Sum32(seed) h.Write(payload) h.Write([]byte(id.LocalAddress)) h.Write([]byte(id.RemoteAddress)) hash := h.Sum32() idx := reciprocalScale(hash, uint32(len(mpep.endpoints))) return mpep.endpoints[idx] } func (ep *multiPortEndpoint) handlePacketAll(r *Route, id TransportEndpointID, pkt tcpip.PacketBuffer) { ep.mu.RLock() queuedProtocol, mustQueue := ep.demux.queuedProtocols[protocolIDs{ep.netProto, ep.transProto}] // HandlePacket takes ownership of pkt, so each endpoint needs // its own copy except for the final one. for _, endpoint := range ep.endpoints[:len(ep.endpoints)-1] { if mustQueue { queuedProtocol.QueuePacket(r, endpoint, id, pkt.Clone()) } else { endpoint.HandlePacket(r, id, pkt.Clone()) } } if endpoint := ep.endpoints[len(ep.endpoints)-1]; mustQueue { queuedProtocol.QueuePacket(r, endpoint, id, pkt) } else { endpoint.HandlePacket(r, id, pkt) } ep.mu.RUnlock() // Don't use defer for performance reasons. } // singleRegisterEndpoint tries to add an endpoint to the multiPortEndpoint // list. The list might be empty already. func (ep *multiPortEndpoint) singleRegisterEndpoint(t TransportEndpoint, reusePort bool) *tcpip.Error { ep.mu.Lock() defer ep.mu.Unlock() if len(ep.endpoints) != 0 { // If it was previously bound, we need to check if we can bind again. if !ep.reuse || !reusePort { return tcpip.ErrPortInUse } } heap.Push(&ep.endpoints, t) return nil } // unregisterEndpoint returns true if multiPortEndpoint has to be unregistered. func (ep *multiPortEndpoint) unregisterEndpoint(t TransportEndpoint) bool { ep.mu.Lock() defer ep.mu.Unlock() for i, endpoint := range ep.endpoints { if endpoint == t { heap.Remove(&ep.endpoints, i) break } } return len(ep.endpoints) == 0 } func (d *transportDemuxer) singleRegisterEndpoint(netProto tcpip.NetworkProtocolNumber, protocol tcpip.TransportProtocolNumber, id TransportEndpointID, ep TransportEndpoint, reusePort bool, bindToDevice tcpip.NICID) *tcpip.Error { if id.RemotePort != 0 { // TODO(eyalsoha): Why? reusePort = false } eps, ok := d.protocol[protocolIDs{netProto, protocol}] if !ok { return tcpip.ErrUnknownProtocol } eps.mu.Lock() defer eps.mu.Unlock() epsByNic, ok := eps.endpoints[id] if !ok { epsByNic = &endpointsByNic{ endpoints: make(map[tcpip.NICID]*multiPortEndpoint), seed: rand.Uint32(), } eps.endpoints[id] = epsByNic } return epsByNic.registerEndpoint(d, netProto, protocol, ep, reusePort, bindToDevice) } // unregisterEndpoint unregisters the endpoint with the given id such that it // won't receive any more packets. func (d *transportDemuxer) unregisterEndpoint(netProtos []tcpip.NetworkProtocolNumber, protocol tcpip.TransportProtocolNumber, id TransportEndpointID, ep TransportEndpoint, bindToDevice tcpip.NICID) { for _, n := range netProtos { if eps, ok := d.protocol[protocolIDs{n, protocol}]; ok { eps.unregisterEndpoint(id, ep, bindToDevice) } } } // deliverPacket attempts to find one or more matching transport endpoints, and // then, if matches are found, delivers the packet to them. Returns true if // the packet no longer needs to be handled. func (d *transportDemuxer) deliverPacket(r *Route, protocol tcpip.TransportProtocolNumber, pkt tcpip.PacketBuffer, id TransportEndpointID) bool { eps, ok := d.protocol[protocolIDs{r.NetProto, protocol}] if !ok { return false } // If the packet is a UDP broadcast or multicast, then find all matching // transport endpoints. if protocol == header.UDPProtocolNumber && isMulticastOrBroadcast(id.LocalAddress) { eps.mu.RLock() destEPs := d.findAllEndpointsLocked(eps, id) eps.mu.RUnlock() // Fail if we didn't find at least one matching transport endpoint. if len(destEPs) == 0 { r.Stats().UDP.UnknownPortErrors.Increment() return false } // handlePacket takes ownership of pkt, so each endpoint needs its own // copy except for the final one. for _, ep := range destEPs[:len(destEPs)-1] { ep.handlePacket(r, id, pkt.Clone()) } destEPs[len(destEPs)-1].handlePacket(r, id, pkt) return true } // If the packet is a TCP packet with a non-unicast source or destination // address, then do nothing further and instruct the caller to do the same. if protocol == header.TCPProtocolNumber && (!isUnicast(r.LocalAddress) || !isUnicast(r.RemoteAddress)) { // TCP can only be used to communicate between a single source and a // single destination; the addresses must be unicast. r.Stats().TCP.InvalidSegmentsReceived.Increment() return true } eps.mu.RLock() ep := d.findEndpointLocked(eps, id) eps.mu.RUnlock() if ep == nil { if protocol == header.UDPProtocolNumber { r.Stats().UDP.UnknownPortErrors.Increment() } return false } ep.handlePacket(r, id, pkt) return true } // deliverRawPacket attempts to deliver the given packet and returns whether it // was delivered successfully. func (d *transportDemuxer) deliverRawPacket(r *Route, protocol tcpip.TransportProtocolNumber, pkt tcpip.PacketBuffer) bool { eps, ok := d.protocol[protocolIDs{r.NetProto, protocol}] if !ok { return false } // As in net/ipv4/ip_input.c:ip_local_deliver, attempt to deliver via // raw endpoint first. If there are multiple raw endpoints, they all // receive the packet. foundRaw := false eps.mu.RLock() for _, rawEP := range eps.rawEndpoints { // Each endpoint gets its own copy of the packet for the sake // of save/restore. rawEP.HandlePacket(r, pkt) foundRaw = true } eps.mu.RUnlock() return foundRaw } // deliverControlPacket attempts to deliver the given control packet. Returns // true if it found an endpoint, false otherwise. func (d *transportDemuxer) deliverControlPacket(n *NIC, net tcpip.NetworkProtocolNumber, trans tcpip.TransportProtocolNumber, typ ControlType, extra uint32, pkt tcpip.PacketBuffer, id TransportEndpointID) bool { eps, ok := d.protocol[protocolIDs{net, trans}] if !ok { return false } // Try to find the endpoint. eps.mu.RLock() ep := d.findEndpointLocked(eps, id) eps.mu.RUnlock() // Fail if we didn't find one. if ep == nil { return false } // Deliver the packet. ep.handleControlPacket(n, id, typ, extra, pkt) return true } // iterEndpointsLocked yields all endpointsByNic in eps that match id, in // descending order of match quality. If a call to yield returns false, // iterEndpointsLocked stops iteration and returns immediately. // // Preconditions: eps.mu must be locked. func (d *transportDemuxer) iterEndpointsLocked(eps *transportEndpoints, id TransportEndpointID, yield func(*endpointsByNic) bool) { // Try to find a match with the id as provided. if ep, ok := eps.endpoints[id]; ok { if !yield(ep) { return } } // Try to find a match with the id minus the local address. nid := id nid.LocalAddress = "" if ep, ok := eps.endpoints[nid]; ok { if !yield(ep) { return } } // Try to find a match with the id minus the remote part. nid.LocalAddress = id.LocalAddress nid.RemoteAddress = "" nid.RemotePort = 0 if ep, ok := eps.endpoints[nid]; ok { if !yield(ep) { return } } // Try to find a match with only the local port. nid.LocalAddress = "" if ep, ok := eps.endpoints[nid]; ok { if !yield(ep) { return } } } func (d *transportDemuxer) findAllEndpointsLocked(eps *transportEndpoints, id TransportEndpointID) []*endpointsByNic { var matchedEPs []*endpointsByNic d.iterEndpointsLocked(eps, id, func(ep *endpointsByNic) bool { matchedEPs = append(matchedEPs, ep) return true }) return matchedEPs } // findTransportEndpoint find a single endpoint that most closely matches the provided id. func (d *transportDemuxer) findTransportEndpoint(netProto tcpip.NetworkProtocolNumber, transProto tcpip.TransportProtocolNumber, id TransportEndpointID, r *Route) TransportEndpoint { eps, ok := d.protocol[protocolIDs{netProto, transProto}] if !ok { return nil } // Try to find the endpoint. eps.mu.RLock() epsByNic := d.findEndpointLocked(eps, id) // Fail if we didn't find one. if epsByNic == nil { eps.mu.RUnlock() return nil } epsByNic.mu.RLock() eps.mu.RUnlock() mpep, ok := epsByNic.endpoints[r.ref.nic.ID()] if !ok { if mpep, ok = epsByNic.endpoints[0]; !ok { epsByNic.mu.RUnlock() // Don't use defer for performance reasons. return nil } } ep := selectEndpoint(id, mpep, epsByNic.seed) epsByNic.mu.RUnlock() return ep } // findEndpointLocked returns the endpoint that most closely matches the given // id. func (d *transportDemuxer) findEndpointLocked(eps *transportEndpoints, id TransportEndpointID) *endpointsByNic { var matchedEP *endpointsByNic d.iterEndpointsLocked(eps, id, func(ep *endpointsByNic) bool { matchedEP = ep return false }) return matchedEP } // registerRawEndpoint registers the given endpoint with the dispatcher such // that packets of the appropriate protocol are delivered to it. A single // packet can be sent to one or more raw endpoints along with a non-raw // endpoint. func (d *transportDemuxer) registerRawEndpoint(netProto tcpip.NetworkProtocolNumber, transProto tcpip.TransportProtocolNumber, ep RawTransportEndpoint) *tcpip.Error { eps, ok := d.protocol[protocolIDs{netProto, transProto}] if !ok { return tcpip.ErrNotSupported } eps.mu.Lock() eps.rawEndpoints = append(eps.rawEndpoints, ep) eps.mu.Unlock() return nil } // unregisterRawEndpoint unregisters the raw endpoint for the given transport // protocol such that it won't receive any more packets. func (d *transportDemuxer) unregisterRawEndpoint(netProto tcpip.NetworkProtocolNumber, transProto tcpip.TransportProtocolNumber, ep RawTransportEndpoint) { eps, ok := d.protocol[protocolIDs{netProto, transProto}] if !ok { panic(fmt.Errorf("tried to unregister endpoint with unsupported network and transport protocol pair: %d, %d", netProto, transProto)) } eps.mu.Lock() for i, rawEP := range eps.rawEndpoints { if rawEP == ep { lastIdx := len(eps.rawEndpoints) - 1 eps.rawEndpoints[i] = eps.rawEndpoints[lastIdx] eps.rawEndpoints[lastIdx] = nil eps.rawEndpoints = eps.rawEndpoints[:lastIdx] break } } eps.mu.Unlock() } func isMulticastOrBroadcast(addr tcpip.Address) bool { return addr == header.IPv4Broadcast || header.IsV4MulticastAddress(addr) || header.IsV6MulticastAddress(addr) } func isUnicast(addr tcpip.Address) bool { return addr != header.IPv4Any && addr != header.IPv6Any && !isMulticastOrBroadcast(addr) }