// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package stack

import (
	"fmt"
	"math/rand"

	"gvisor.dev/gvisor/pkg/sync"
	"gvisor.dev/gvisor/pkg/tcpip"
	"gvisor.dev/gvisor/pkg/tcpip/hash/jenkins"
	"gvisor.dev/gvisor/pkg/tcpip/header"
	"gvisor.dev/gvisor/pkg/tcpip/ports"
)

type protocolIDs struct {
	network   tcpip.NetworkProtocolNumber
	transport tcpip.TransportProtocolNumber
}

// transportEndpoints manages all endpoints of a given protocol. It has its own
// mutex so as to reduce interference between protocols.
type transportEndpoints struct {
	// mu protects all fields of the transportEndpoints.
	mu        sync.RWMutex
	endpoints map[TransportEndpointID]*endpointsByNIC
	// rawEndpoints contains endpoints for raw sockets, which receive all
	// traffic of a given protocol regardless of port.
	rawEndpoints []RawTransportEndpoint
}

// unregisterEndpoint unregisters the endpoint with the given id such that it
// won't receive any more packets.
func (eps *transportEndpoints) unregisterEndpoint(id TransportEndpointID, ep TransportEndpoint, flags ports.Flags, bindToDevice tcpip.NICID) {
	eps.mu.Lock()
	defer eps.mu.Unlock()
	epsByNIC, ok := eps.endpoints[id]
	if !ok {
		return
	}
	if !epsByNIC.unregisterEndpoint(bindToDevice, ep, flags) {
		return
	}
	delete(eps.endpoints, id)
}

func (eps *transportEndpoints) transportEndpoints() []TransportEndpoint {
	eps.mu.RLock()
	defer eps.mu.RUnlock()
	es := make([]TransportEndpoint, 0, len(eps.endpoints))
	for _, e := range eps.endpoints {
		es = append(es, e.transportEndpoints()...)
	}
	return es
}

// iterEndpointsLocked yields all endpointsByNIC in eps that match id, in
// descending order of match quality. If a call to yield returns false,
// iterEndpointsLocked stops iteration and returns immediately.
//
// Preconditions: eps.mu must be locked.
func (eps *transportEndpoints) iterEndpointsLocked(id TransportEndpointID, yield func(*endpointsByNIC) bool) {
	// Try to find a match with the id as provided.
	if ep, ok := eps.endpoints[id]; ok {
		if !yield(ep) {
			return
		}
	}

	// Try to find a match with the id minus the local address.
	nid := id

	nid.LocalAddress = ""
	if ep, ok := eps.endpoints[nid]; ok {
		if !yield(ep) {
			return
		}
	}

	// Try to find a match with the id minus the remote part.
	nid.LocalAddress = id.LocalAddress
	nid.RemoteAddress = ""
	nid.RemotePort = 0
	if ep, ok := eps.endpoints[nid]; ok {
		if !yield(ep) {
			return
		}
	}

	// Try to find a match with only the local port.
	nid.LocalAddress = ""
	if ep, ok := eps.endpoints[nid]; ok {
		if !yield(ep) {
			return
		}
	}
}

// findAllEndpointsLocked returns all endpointsByNIC in eps that match id, in
// descending order of match quality.
//
// Preconditions: eps.mu must be locked.
func (eps *transportEndpoints) findAllEndpointsLocked(id TransportEndpointID) []*endpointsByNIC {
	var matchedEPs []*endpointsByNIC
	eps.iterEndpointsLocked(id, func(ep *endpointsByNIC) bool {
		matchedEPs = append(matchedEPs, ep)
		return true
	})
	return matchedEPs
}

// findEndpointLocked returns the endpoint that most closely matches the given id.
//
// Preconditions: eps.mu must be locked.
func (eps *transportEndpoints) findEndpointLocked(id TransportEndpointID) *endpointsByNIC {
	var matchedEP *endpointsByNIC
	eps.iterEndpointsLocked(id, func(ep *endpointsByNIC) bool {
		matchedEP = ep
		return false
	})
	return matchedEP
}

type endpointsByNIC struct {
	mu        sync.RWMutex
	endpoints map[tcpip.NICID]*multiPortEndpoint
	// seed is a random secret for a jenkins hash.
	seed uint32
}

func (epsByNIC *endpointsByNIC) transportEndpoints() []TransportEndpoint {
	epsByNIC.mu.RLock()
	defer epsByNIC.mu.RUnlock()
	var eps []TransportEndpoint
	for _, ep := range epsByNIC.endpoints {
		eps = append(eps, ep.transportEndpoints()...)
	}
	return eps
}

// HandlePacket is called by the stack when new packets arrive to this transport
// endpoint.
func (epsByNIC *endpointsByNIC) handlePacket(id TransportEndpointID, pkt *PacketBuffer) {
	epsByNIC.mu.RLock()

	mpep, ok := epsByNIC.endpoints[pkt.NICID]
	if !ok {
		if mpep, ok = epsByNIC.endpoints[0]; !ok {
			epsByNIC.mu.RUnlock() // Don't use defer for performance reasons.
			return
		}
	}

	// If this is a broadcast or multicast datagram, deliver the datagram to all
	// endpoints bound to the right device.
	if isInboundMulticastOrBroadcast(pkt, id.LocalAddress) {
		mpep.handlePacketAll(id, pkt)
		epsByNIC.mu.RUnlock() // Don't use defer for performance reasons.
		return
	}
	// multiPortEndpoints are guaranteed to have at least one element.
	transEP := selectEndpoint(id, mpep, epsByNIC.seed)
	if queuedProtocol, mustQueue := mpep.demux.queuedProtocols[protocolIDs{mpep.netProto, mpep.transProto}]; mustQueue {
		queuedProtocol.QueuePacket(transEP, id, pkt)
		epsByNIC.mu.RUnlock()
		return
	}

	transEP.HandlePacket(id, pkt)
	epsByNIC.mu.RUnlock() // Don't use defer for performance reasons.
}

// handleError delivers an error to the transport endpoint identified by id.
func (epsByNIC *endpointsByNIC) handleError(n *NIC, id TransportEndpointID, transErr TransportError, pkt *PacketBuffer) {
	epsByNIC.mu.RLock()
	defer epsByNIC.mu.RUnlock()

	mpep, ok := epsByNIC.endpoints[n.ID()]
	if !ok {
		mpep, ok = epsByNIC.endpoints[0]
	}
	if !ok {
		return
	}

	// TODO(eyalsoha): Why don't we look at id to see if this packet needs to
	// broadcast like we are doing with handlePacket above?

	// multiPortEndpoints are guaranteed to have at least one element.
	selectEndpoint(id, mpep, epsByNIC.seed).HandleError(transErr, pkt)
}

// registerEndpoint returns true if it succeeds. It fails and returns
// false if ep already has an element with the same key.
func (epsByNIC *endpointsByNIC) registerEndpoint(d *transportDemuxer, netProto tcpip.NetworkProtocolNumber, transProto tcpip.TransportProtocolNumber, t TransportEndpoint, flags ports.Flags, bindToDevice tcpip.NICID) tcpip.Error {
	epsByNIC.mu.Lock()
	defer epsByNIC.mu.Unlock()

	multiPortEp, ok := epsByNIC.endpoints[bindToDevice]
	if !ok {
		multiPortEp = &multiPortEndpoint{
			demux:      d,
			netProto:   netProto,
			transProto: transProto,
		}
		epsByNIC.endpoints[bindToDevice] = multiPortEp
	}

	return multiPortEp.singleRegisterEndpoint(t, flags)
}

func (epsByNIC *endpointsByNIC) checkEndpoint(d *transportDemuxer, netProto tcpip.NetworkProtocolNumber, transProto tcpip.TransportProtocolNumber, flags ports.Flags, bindToDevice tcpip.NICID) tcpip.Error {
	epsByNIC.mu.RLock()
	defer epsByNIC.mu.RUnlock()

	multiPortEp, ok := epsByNIC.endpoints[bindToDevice]
	if !ok {
		return nil
	}

	return multiPortEp.singleCheckEndpoint(flags)
}

// unregisterEndpoint returns true if endpointsByNIC has to be unregistered.
func (epsByNIC *endpointsByNIC) unregisterEndpoint(bindToDevice tcpip.NICID, t TransportEndpoint, flags ports.Flags) bool {
	epsByNIC.mu.Lock()
	defer epsByNIC.mu.Unlock()
	multiPortEp, ok := epsByNIC.endpoints[bindToDevice]
	if !ok {
		return false
	}
	if multiPortEp.unregisterEndpoint(t, flags) {
		delete(epsByNIC.endpoints, bindToDevice)
	}
	return len(epsByNIC.endpoints) == 0
}

// transportDemuxer demultiplexes packets targeted at a transport endpoint
// (i.e., after they've been parsed by the network layer). It does two levels
// of demultiplexing: first based on the network and transport protocols, then
// based on endpoints IDs. It should only be instantiated via
// newTransportDemuxer.
type transportDemuxer struct {
	stack *Stack

	// protocol is immutable.
	protocol        map[protocolIDs]*transportEndpoints
	queuedProtocols map[protocolIDs]queuedTransportProtocol
}

// queuedTransportProtocol if supported by a protocol implementation will cause
// the dispatcher to delivery packets to the QueuePacket method instead of
// calling HandlePacket directly on the endpoint.
type queuedTransportProtocol interface {
	QueuePacket(ep TransportEndpoint, id TransportEndpointID, pkt *PacketBuffer)
}

func newTransportDemuxer(stack *Stack) *transportDemuxer {
	d := &transportDemuxer{
		stack:           stack,
		protocol:        make(map[protocolIDs]*transportEndpoints),
		queuedProtocols: make(map[protocolIDs]queuedTransportProtocol),
	}

	// Add each network and transport pair to the demuxer.
	for netProto := range stack.networkProtocols {
		for proto := range stack.transportProtocols {
			protoIDs := protocolIDs{netProto, proto}
			d.protocol[protoIDs] = &transportEndpoints{
				endpoints: make(map[TransportEndpointID]*endpointsByNIC),
			}
			qTransProto, isQueued := (stack.transportProtocols[proto].proto).(queuedTransportProtocol)
			if isQueued {
				d.queuedProtocols[protoIDs] = qTransProto
			}
		}
	}

	return d
}

// registerEndpoint registers the given endpoint with the dispatcher such that
// packets that match the endpoint ID are delivered to it.
func (d *transportDemuxer) registerEndpoint(netProtos []tcpip.NetworkProtocolNumber, protocol tcpip.TransportProtocolNumber, id TransportEndpointID, ep TransportEndpoint, flags ports.Flags, bindToDevice tcpip.NICID) tcpip.Error {
	for i, n := range netProtos {
		if err := d.singleRegisterEndpoint(n, protocol, id, ep, flags, bindToDevice); err != nil {
			d.unregisterEndpoint(netProtos[:i], protocol, id, ep, flags, bindToDevice)
			return err
		}
	}

	return nil
}

// checkEndpoint checks if an endpoint can be registered with the dispatcher.
func (d *transportDemuxer) checkEndpoint(netProtos []tcpip.NetworkProtocolNumber, protocol tcpip.TransportProtocolNumber, id TransportEndpointID, flags ports.Flags, bindToDevice tcpip.NICID) tcpip.Error {
	for _, n := range netProtos {
		if err := d.singleCheckEndpoint(n, protocol, id, flags, bindToDevice); err != nil {
			return err
		}
	}

	return nil
}

// multiPortEndpoint is a container for TransportEndpoints which are bound to
// the same pair of address and port. endpointsArr always has at least one
// element.
//
// FIXME(gvisor.dev/issue/873): Restore this properly. Currently, we just save
// this to ensure that the underlying endpoints get saved/restored, but not not
// use the restored copy.
//
// +stateify savable
type multiPortEndpoint struct {
	mu         sync.RWMutex `state:"nosave"`
	demux      *transportDemuxer
	netProto   tcpip.NetworkProtocolNumber
	transProto tcpip.TransportProtocolNumber

	// endpoints stores the transport endpoints in the order in which they
	// were bound. This is required for UDP SO_REUSEADDR.
	endpoints []TransportEndpoint
	flags     ports.FlagCounter
}

func (ep *multiPortEndpoint) transportEndpoints() []TransportEndpoint {
	ep.mu.RLock()
	eps := append([]TransportEndpoint(nil), ep.endpoints...)
	ep.mu.RUnlock()
	return eps
}

// reciprocalScale scales a value into range [0, n).
//
// This is similar to val % n, but faster.
// See http://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
func reciprocalScale(val, n uint32) uint32 {
	return uint32((uint64(val) * uint64(n)) >> 32)
}

// selectEndpoint calculates a hash of destination and source addresses and
// ports then uses it to select a socket. In this case, all packets from one
// address will be sent to same endpoint.
func selectEndpoint(id TransportEndpointID, mpep *multiPortEndpoint, seed uint32) TransportEndpoint {
	if len(mpep.endpoints) == 1 {
		return mpep.endpoints[0]
	}

	if mpep.flags.IntersectionRefs().ToFlags().Effective().MostRecent {
		return mpep.endpoints[len(mpep.endpoints)-1]
	}

	payload := []byte{
		byte(id.LocalPort),
		byte(id.LocalPort >> 8),
		byte(id.RemotePort),
		byte(id.RemotePort >> 8),
	}

	h := jenkins.Sum32(seed)
	h.Write(payload)
	h.Write([]byte(id.LocalAddress))
	h.Write([]byte(id.RemoteAddress))
	hash := h.Sum32()

	idx := reciprocalScale(hash, uint32(len(mpep.endpoints)))
	return mpep.endpoints[idx]
}

func (ep *multiPortEndpoint) handlePacketAll(id TransportEndpointID, pkt *PacketBuffer) {
	ep.mu.RLock()
	queuedProtocol, mustQueue := ep.demux.queuedProtocols[protocolIDs{ep.netProto, ep.transProto}]
	// HandlePacket takes ownership of pkt, so each endpoint needs
	// its own copy except for the final one.
	for _, endpoint := range ep.endpoints[:len(ep.endpoints)-1] {
		if mustQueue {
			queuedProtocol.QueuePacket(endpoint, id, pkt.Clone())
		} else {
			endpoint.HandlePacket(id, pkt.Clone())
		}
	}
	if endpoint := ep.endpoints[len(ep.endpoints)-1]; mustQueue {
		queuedProtocol.QueuePacket(endpoint, id, pkt)
	} else {
		endpoint.HandlePacket(id, pkt)
	}
	ep.mu.RUnlock() // Don't use defer for performance reasons.
}

// singleRegisterEndpoint tries to add an endpoint to the multiPortEndpoint
// list. The list might be empty already.
func (ep *multiPortEndpoint) singleRegisterEndpoint(t TransportEndpoint, flags ports.Flags) tcpip.Error {
	ep.mu.Lock()
	defer ep.mu.Unlock()

	bits := flags.Bits() & ports.MultiBindFlagMask

	if len(ep.endpoints) != 0 {
		// If it was previously bound, we need to check if we can bind again.
		if ep.flags.TotalRefs() > 0 && bits&ep.flags.IntersectionRefs() == 0 {
			return &tcpip.ErrPortInUse{}
		}
	}

	ep.endpoints = append(ep.endpoints, t)
	ep.flags.AddRef(bits)

	return nil
}

func (ep *multiPortEndpoint) singleCheckEndpoint(flags ports.Flags) tcpip.Error {
	ep.mu.RLock()
	defer ep.mu.RUnlock()

	bits := flags.Bits() & ports.MultiBindFlagMask

	if len(ep.endpoints) != 0 {
		// If it was previously bound, we need to check if we can bind again.
		if ep.flags.TotalRefs() > 0 && bits&ep.flags.IntersectionRefs() == 0 {
			return &tcpip.ErrPortInUse{}
		}
	}

	return nil
}

// unregisterEndpoint returns true if multiPortEndpoint has to be unregistered.
func (ep *multiPortEndpoint) unregisterEndpoint(t TransportEndpoint, flags ports.Flags) bool {
	ep.mu.Lock()
	defer ep.mu.Unlock()

	for i, endpoint := range ep.endpoints {
		if endpoint == t {
			copy(ep.endpoints[i:], ep.endpoints[i+1:])
			ep.endpoints[len(ep.endpoints)-1] = nil
			ep.endpoints = ep.endpoints[:len(ep.endpoints)-1]

			ep.flags.DropRef(flags.Bits() & ports.MultiBindFlagMask)
			break
		}
	}
	return len(ep.endpoints) == 0
}

func (d *transportDemuxer) singleRegisterEndpoint(netProto tcpip.NetworkProtocolNumber, protocol tcpip.TransportProtocolNumber, id TransportEndpointID, ep TransportEndpoint, flags ports.Flags, bindToDevice tcpip.NICID) tcpip.Error {
	if id.RemotePort != 0 {
		// SO_REUSEPORT only applies to bound/listening endpoints.
		flags.LoadBalanced = false
	}

	eps, ok := d.protocol[protocolIDs{netProto, protocol}]
	if !ok {
		return &tcpip.ErrUnknownProtocol{}
	}

	eps.mu.Lock()
	defer eps.mu.Unlock()

	epsByNIC, ok := eps.endpoints[id]
	if !ok {
		epsByNIC = &endpointsByNIC{
			endpoints: make(map[tcpip.NICID]*multiPortEndpoint),
			seed:      rand.Uint32(),
		}
		eps.endpoints[id] = epsByNIC
	}

	return epsByNIC.registerEndpoint(d, netProto, protocol, ep, flags, bindToDevice)
}

func (d *transportDemuxer) singleCheckEndpoint(netProto tcpip.NetworkProtocolNumber, protocol tcpip.TransportProtocolNumber, id TransportEndpointID, flags ports.Flags, bindToDevice tcpip.NICID) tcpip.Error {
	if id.RemotePort != 0 {
		// SO_REUSEPORT only applies to bound/listening endpoints.
		flags.LoadBalanced = false
	}

	eps, ok := d.protocol[protocolIDs{netProto, protocol}]
	if !ok {
		return &tcpip.ErrUnknownProtocol{}
	}

	eps.mu.RLock()
	defer eps.mu.RUnlock()

	epsByNIC, ok := eps.endpoints[id]
	if !ok {
		return nil
	}

	return epsByNIC.checkEndpoint(d, netProto, protocol, flags, bindToDevice)
}

// unregisterEndpoint unregisters the endpoint with the given id such that it
// won't receive any more packets.
func (d *transportDemuxer) unregisterEndpoint(netProtos []tcpip.NetworkProtocolNumber, protocol tcpip.TransportProtocolNumber, id TransportEndpointID, ep TransportEndpoint, flags ports.Flags, bindToDevice tcpip.NICID) {
	if id.RemotePort != 0 {
		// SO_REUSEPORT only applies to bound/listening endpoints.
		flags.LoadBalanced = false
	}

	for _, n := range netProtos {
		if eps, ok := d.protocol[protocolIDs{n, protocol}]; ok {
			eps.unregisterEndpoint(id, ep, flags, bindToDevice)
		}
	}
}

// deliverPacket attempts to find one or more matching transport endpoints, and
// then, if matches are found, delivers the packet to them. Returns true if
// the packet no longer needs to be handled.
func (d *transportDemuxer) deliverPacket(protocol tcpip.TransportProtocolNumber, pkt *PacketBuffer, id TransportEndpointID) bool {
	eps, ok := d.protocol[protocolIDs{pkt.NetworkProtocolNumber, protocol}]
	if !ok {
		return false
	}

	// If the packet is a UDP broadcast or multicast, then find all matching
	// transport endpoints.
	if protocol == header.UDPProtocolNumber && isInboundMulticastOrBroadcast(pkt, id.LocalAddress) {
		eps.mu.RLock()
		destEPs := eps.findAllEndpointsLocked(id)
		eps.mu.RUnlock()
		// Fail if we didn't find at least one matching transport endpoint.
		if len(destEPs) == 0 {
			d.stack.stats.UDP.UnknownPortErrors.Increment()
			return false
		}
		// handlePacket takes ownership of pkt, so each endpoint needs its own
		// copy except for the final one.
		for _, ep := range destEPs[:len(destEPs)-1] {
			ep.handlePacket(id, pkt.Clone())
		}
		destEPs[len(destEPs)-1].handlePacket(id, pkt)
		return true
	}

	// If the packet is a TCP packet with a unspecified source or non-unicast
	// destination address, then do nothing further and instruct the caller to do
	// the same. The network layer handles address validation for specified source
	// addresses.
	if protocol == header.TCPProtocolNumber && (!isSpecified(id.LocalAddress) || !isSpecified(id.RemoteAddress) || isInboundMulticastOrBroadcast(pkt, id.LocalAddress)) {
		// TCP can only be used to communicate between a single source and a
		// single destination; the addresses must be unicast.e
		d.stack.stats.TCP.InvalidSegmentsReceived.Increment()
		return true
	}

	eps.mu.RLock()
	ep := eps.findEndpointLocked(id)
	eps.mu.RUnlock()
	if ep == nil {
		if protocol == header.UDPProtocolNumber {
			d.stack.stats.UDP.UnknownPortErrors.Increment()
		}
		return false
	}
	ep.handlePacket(id, pkt)
	return true
}

// deliverRawPacket attempts to deliver the given packet and returns whether it
// was delivered successfully.
func (d *transportDemuxer) deliverRawPacket(protocol tcpip.TransportProtocolNumber, pkt *PacketBuffer) bool {
	eps, ok := d.protocol[protocolIDs{pkt.NetworkProtocolNumber, protocol}]
	if !ok {
		return false
	}

	// As in net/ipv4/ip_input.c:ip_local_deliver, attempt to deliver via
	// raw endpoint first. If there are multiple raw endpoints, they all
	// receive the packet.
	foundRaw := false
	eps.mu.RLock()
	for _, rawEP := range eps.rawEndpoints {
		// Each endpoint gets its own copy of the packet for the sake
		// of save/restore.
		rawEP.HandlePacket(pkt.Clone())
		foundRaw = true
	}
	eps.mu.RUnlock()

	return foundRaw
}

// deliverError attempts to deliver the given error to the appropriate transport
// endpoint.
//
// Returns true if the error was delivered.
func (d *transportDemuxer) deliverError(n *NIC, net tcpip.NetworkProtocolNumber, trans tcpip.TransportProtocolNumber, transErr TransportError, pkt *PacketBuffer, id TransportEndpointID) bool {
	eps, ok := d.protocol[protocolIDs{net, trans}]
	if !ok {
		return false
	}

	eps.mu.RLock()
	ep := eps.findEndpointLocked(id)
	eps.mu.RUnlock()
	if ep == nil {
		return false
	}

	ep.handleError(n, id, transErr, pkt)
	return true
}

// findTransportEndpoint find a single endpoint that most closely matches the provided id.
func (d *transportDemuxer) findTransportEndpoint(netProto tcpip.NetworkProtocolNumber, transProto tcpip.TransportProtocolNumber, id TransportEndpointID, nicID tcpip.NICID) TransportEndpoint {
	eps, ok := d.protocol[protocolIDs{netProto, transProto}]
	if !ok {
		return nil
	}

	eps.mu.RLock()
	epsByNIC := eps.findEndpointLocked(id)
	if epsByNIC == nil {
		eps.mu.RUnlock()
		return nil
	}

	epsByNIC.mu.RLock()
	eps.mu.RUnlock()

	mpep, ok := epsByNIC.endpoints[nicID]
	if !ok {
		if mpep, ok = epsByNIC.endpoints[0]; !ok {
			epsByNIC.mu.RUnlock() // Don't use defer for performance reasons.
			return nil
		}
	}

	ep := selectEndpoint(id, mpep, epsByNIC.seed)
	epsByNIC.mu.RUnlock()
	return ep
}

// registerRawEndpoint registers the given endpoint with the dispatcher such
// that packets of the appropriate protocol are delivered to it. A single
// packet can be sent to one or more raw endpoints along with a non-raw
// endpoint.
func (d *transportDemuxer) registerRawEndpoint(netProto tcpip.NetworkProtocolNumber, transProto tcpip.TransportProtocolNumber, ep RawTransportEndpoint) tcpip.Error {
	eps, ok := d.protocol[protocolIDs{netProto, transProto}]
	if !ok {
		return &tcpip.ErrNotSupported{}
	}

	eps.mu.Lock()
	eps.rawEndpoints = append(eps.rawEndpoints, ep)
	eps.mu.Unlock()

	return nil
}

// unregisterRawEndpoint unregisters the raw endpoint for the given transport
// protocol such that it won't receive any more packets.
func (d *transportDemuxer) unregisterRawEndpoint(netProto tcpip.NetworkProtocolNumber, transProto tcpip.TransportProtocolNumber, ep RawTransportEndpoint) {
	eps, ok := d.protocol[protocolIDs{netProto, transProto}]
	if !ok {
		panic(fmt.Errorf("tried to unregister endpoint with unsupported network and transport protocol pair: %d, %d", netProto, transProto))
	}

	eps.mu.Lock()
	for i, rawEP := range eps.rawEndpoints {
		if rawEP == ep {
			lastIdx := len(eps.rawEndpoints) - 1
			eps.rawEndpoints[i] = eps.rawEndpoints[lastIdx]
			eps.rawEndpoints[lastIdx] = nil
			eps.rawEndpoints = eps.rawEndpoints[:lastIdx]
			break
		}
	}
	eps.mu.Unlock()
}

func isInboundMulticastOrBroadcast(pkt *PacketBuffer, localAddr tcpip.Address) bool {
	return pkt.NetworkPacketInfo.LocalAddressBroadcast || header.IsV4MulticastAddress(localAddr) || header.IsV6MulticastAddress(localAddr)
}

func isSpecified(addr tcpip.Address) bool {
	return addr != header.IPv4Any && addr != header.IPv6Any
}