// Copyright 2018 The gVisor Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package stack import ( "strings" "sync" "sync/atomic" "gvisor.dev/gvisor/pkg/tcpip" "gvisor.dev/gvisor/pkg/tcpip/buffer" "gvisor.dev/gvisor/pkg/tcpip/header" ) // NIC represents a "network interface card" to which the networking stack is // attached. type NIC struct { stack *Stack id tcpip.NICID name string linkEP LinkEndpoint loopback bool mu sync.RWMutex spoofing bool promiscuous bool primary map[tcpip.NetworkProtocolNumber][]*referencedNetworkEndpoint endpoints map[NetworkEndpointID]*referencedNetworkEndpoint addressRanges []tcpip.Subnet mcastJoins map[NetworkEndpointID]int32 // packetEPs is protected by mu, but the contained PacketEndpoint // values are not. packetEPs map[tcpip.NetworkProtocolNumber][]PacketEndpoint stats NICStats // ndp is the NDP related state for NIC. // // Note, read and write operations on ndp require that the NIC is // appropriately locked. ndp ndpState } // NICStats includes transmitted and received stats. type NICStats struct { Tx DirectionStats Rx DirectionStats } // DirectionStats includes packet and byte counts. type DirectionStats struct { Packets *tcpip.StatCounter Bytes *tcpip.StatCounter } // PrimaryEndpointBehavior is an enumeration of an endpoint's primacy behavior. type PrimaryEndpointBehavior int const ( // CanBePrimaryEndpoint indicates the endpoint can be used as a primary // endpoint for new connections with no local address. This is the // default when calling NIC.AddAddress. CanBePrimaryEndpoint PrimaryEndpointBehavior = iota // FirstPrimaryEndpoint indicates the endpoint should be the first // primary endpoint considered. If there are multiple endpoints with // this behavior, the most recently-added one will be first. FirstPrimaryEndpoint // NeverPrimaryEndpoint indicates the endpoint should never be a // primary endpoint. NeverPrimaryEndpoint ) // newNIC returns a new NIC using the default NDP configurations from stack. func newNIC(stack *Stack, id tcpip.NICID, name string, ep LinkEndpoint, loopback bool) *NIC { // TODO(b/141011931): Validate a LinkEndpoint (ep) is valid. For // example, make sure that the link address it provides is a valid // unicast ethernet address. // TODO(b/143357959): RFC 8200 section 5 requires that IPv6 endpoints // observe an MTU of at least 1280 bytes. Ensure that this requirement // of IPv6 is supported on this endpoint's LinkEndpoint. nic := &NIC{ stack: stack, id: id, name: name, linkEP: ep, loopback: loopback, primary: make(map[tcpip.NetworkProtocolNumber][]*referencedNetworkEndpoint), endpoints: make(map[NetworkEndpointID]*referencedNetworkEndpoint), mcastJoins: make(map[NetworkEndpointID]int32), packetEPs: make(map[tcpip.NetworkProtocolNumber][]PacketEndpoint), stats: NICStats{ Tx: DirectionStats{ Packets: &tcpip.StatCounter{}, Bytes: &tcpip.StatCounter{}, }, Rx: DirectionStats{ Packets: &tcpip.StatCounter{}, Bytes: &tcpip.StatCounter{}, }, }, ndp: ndpState{ configs: stack.ndpConfigs, dad: make(map[tcpip.Address]dadState), defaultRouters: make(map[tcpip.Address]defaultRouterState), onLinkPrefixes: make(map[tcpip.Subnet]onLinkPrefixState), autoGenAddresses: make(map[tcpip.Address]autoGenAddressState), }, } nic.ndp.nic = nic // Register supported packet endpoint protocols. for _, netProto := range header.Ethertypes { nic.packetEPs[netProto] = []PacketEndpoint{} } for _, netProto := range stack.networkProtocols { nic.packetEPs[netProto.Number()] = []PacketEndpoint{} } return nic } // enable enables the NIC. enable will attach the link to its LinkEndpoint and // join the IPv6 All-Nodes Multicast address (ff02::1). func (n *NIC) enable() *tcpip.Error { n.attachLinkEndpoint() // Create an endpoint to receive broadcast packets on this interface. if _, ok := n.stack.networkProtocols[header.IPv4ProtocolNumber]; ok { if err := n.AddAddress(tcpip.ProtocolAddress{ Protocol: header.IPv4ProtocolNumber, AddressWithPrefix: tcpip.AddressWithPrefix{header.IPv4Broadcast, 8 * header.IPv4AddressSize}, }, NeverPrimaryEndpoint); err != nil { return err } } // Join the IPv6 All-Nodes Multicast group if the stack is configured to // use IPv6. This is required to ensure that this node properly receives // and responds to the various NDP messages that are destined to the // all-nodes multicast address. An example is the Neighbor Advertisement // when we perform Duplicate Address Detection, or Router Advertisement // when we do Router Discovery. See RFC 4862, section 5.4.2 and RFC 4861 // section 4.2 for more information. // // Also auto-generate an IPv6 link-local address based on the NIC's // link address if it is configured to do so. Note, each interface is // required to have IPv6 link-local unicast address, as per RFC 4291 // section 2.1. _, ok := n.stack.networkProtocols[header.IPv6ProtocolNumber] if !ok { return nil } n.mu.Lock() defer n.mu.Unlock() if err := n.joinGroupLocked(header.IPv6ProtocolNumber, header.IPv6AllNodesMulticastAddress); err != nil { return err } if !n.stack.autoGenIPv6LinkLocal { return nil } l2addr := n.linkEP.LinkAddress() // Only attempt to generate the link-local address if we have a // valid MAC address. // // TODO(b/141011931): Validate a LinkEndpoint's link address // (provided by LinkEndpoint.LinkAddress) before reaching this // point. if !header.IsValidUnicastEthernetAddress(l2addr) { return nil } addr := header.LinkLocalAddr(l2addr) _, err := n.addPermanentAddressLocked(tcpip.ProtocolAddress{ Protocol: header.IPv6ProtocolNumber, AddressWithPrefix: tcpip.AddressWithPrefix{ Address: addr, PrefixLen: header.IPv6LinkLocalPrefix.PrefixLen, }, }, CanBePrimaryEndpoint) return err } // becomeIPv6Router transitions n into an IPv6 router. // // When transitioning into an IPv6 router, host-only state (NDP discovered // routers, discovered on-link prefixes, and auto-generated addresses) will // be cleaned up/invalidated. func (n *NIC) becomeIPv6Router() { n.mu.Lock() defer n.mu.Unlock() n.ndp.cleanupHostOnlyState() } // attachLinkEndpoint attaches the NIC to the endpoint, which will enable it // to start delivering packets. func (n *NIC) attachLinkEndpoint() { n.linkEP.Attach(n) } // setPromiscuousMode enables or disables promiscuous mode. func (n *NIC) setPromiscuousMode(enable bool) { n.mu.Lock() n.promiscuous = enable n.mu.Unlock() } func (n *NIC) isPromiscuousMode() bool { n.mu.RLock() rv := n.promiscuous n.mu.RUnlock() return rv } // setSpoofing enables or disables address spoofing. func (n *NIC) setSpoofing(enable bool) { n.mu.Lock() n.spoofing = enable n.mu.Unlock() } // primaryEndpoint returns the primary endpoint of n for the given network // protocol. func (n *NIC) primaryEndpoint(protocol tcpip.NetworkProtocolNumber) *referencedNetworkEndpoint { n.mu.RLock() defer n.mu.RUnlock() for _, r := range n.primary[protocol] { if r.isValidForOutgoing() && r.tryIncRef() { return r } } return nil } // hasPermanentAddrLocked returns true if n has a permanent (including currently // tentative) address, addr. func (n *NIC) hasPermanentAddrLocked(addr tcpip.Address) bool { ref, ok := n.endpoints[NetworkEndpointID{addr}] if !ok { return false } kind := ref.getKind() return kind == permanent || kind == permanentTentative } func (n *NIC) getRef(protocol tcpip.NetworkProtocolNumber, dst tcpip.Address) *referencedNetworkEndpoint { return n.getRefOrCreateTemp(protocol, dst, CanBePrimaryEndpoint, n.promiscuous) } // findEndpoint finds the endpoint, if any, with the given address. func (n *NIC) findEndpoint(protocol tcpip.NetworkProtocolNumber, address tcpip.Address, peb PrimaryEndpointBehavior) *referencedNetworkEndpoint { return n.getRefOrCreateTemp(protocol, address, peb, n.spoofing) } // getRefEpOrCreateTemp returns the referenced network endpoint for the given // protocol and address. If none exists a temporary one may be created if // we are in promiscuous mode or spoofing. func (n *NIC) getRefOrCreateTemp(protocol tcpip.NetworkProtocolNumber, address tcpip.Address, peb PrimaryEndpointBehavior, spoofingOrPromiscuous bool) *referencedNetworkEndpoint { id := NetworkEndpointID{address} n.mu.RLock() if ref, ok := n.endpoints[id]; ok { // An endpoint with this id exists, check if it can be used and return it. switch ref.getKind() { case permanentExpired: if !spoofingOrPromiscuous { n.mu.RUnlock() return nil } fallthrough case temporary, permanent: if ref.tryIncRef() { n.mu.RUnlock() return ref } } } // A usable reference was not found, create a temporary one if requested by // the caller or if the address is found in the NIC's subnets. createTempEP := spoofingOrPromiscuous if !createTempEP { for _, sn := range n.addressRanges { // Skip the subnet address. if address == sn.ID() { continue } // For now just skip the broadcast address, until we support it. // FIXME(b/137608825): Add support for sending/receiving directed // (subnet) broadcast. if address == sn.Broadcast() { continue } if sn.Contains(address) { createTempEP = true break } } } n.mu.RUnlock() if !createTempEP { return nil } // Try again with the lock in exclusive mode. If we still can't get the // endpoint, create a new "temporary" endpoint. It will only exist while // there's a route through it. n.mu.Lock() if ref, ok := n.endpoints[id]; ok { // No need to check the type as we are ok with expired endpoints at this // point. if ref.tryIncRef() { n.mu.Unlock() return ref } // tryIncRef failing means the endpoint is scheduled to be removed once the // lock is released. Remove it here so we can create a new (temporary) one. // The removal logic waiting for the lock handles this case. n.removeEndpointLocked(ref) } // Add a new temporary endpoint. netProto, ok := n.stack.networkProtocols[protocol] if !ok { n.mu.Unlock() return nil } ref, _ := n.addAddressLocked(tcpip.ProtocolAddress{ Protocol: protocol, AddressWithPrefix: tcpip.AddressWithPrefix{ Address: address, PrefixLen: netProto.DefaultPrefixLen(), }, }, peb, temporary, static) n.mu.Unlock() return ref } func (n *NIC) addPermanentAddressLocked(protocolAddress tcpip.ProtocolAddress, peb PrimaryEndpointBehavior) (*referencedNetworkEndpoint, *tcpip.Error) { id := NetworkEndpointID{protocolAddress.AddressWithPrefix.Address} if ref, ok := n.endpoints[id]; ok { switch ref.getKind() { case permanentTentative, permanent: // The NIC already have a permanent endpoint with that address. return nil, tcpip.ErrDuplicateAddress case permanentExpired, temporary: // Promote the endpoint to become permanent and respect // the new peb. if ref.tryIncRef() { ref.setKind(permanent) refs := n.primary[ref.protocol] for i, r := range refs { if r == ref { switch peb { case CanBePrimaryEndpoint: return ref, nil case FirstPrimaryEndpoint: if i == 0 { return ref, nil } n.primary[r.protocol] = append(refs[:i], refs[i+1:]...) case NeverPrimaryEndpoint: n.primary[r.protocol] = append(refs[:i], refs[i+1:]...) return ref, nil } } } n.insertPrimaryEndpointLocked(ref, peb) return ref, nil } // tryIncRef failing means the endpoint is scheduled to be removed once // the lock is released. Remove it here so we can create a new // (permanent) one. The removal logic waiting for the lock handles this // case. n.removeEndpointLocked(ref) } } return n.addAddressLocked(protocolAddress, peb, permanent, static) } func (n *NIC) addAddressLocked(protocolAddress tcpip.ProtocolAddress, peb PrimaryEndpointBehavior, kind networkEndpointKind, configType networkEndpointConfigType) (*referencedNetworkEndpoint, *tcpip.Error) { // TODO(b/141022673): Validate IP address before adding them. // Sanity check. id := NetworkEndpointID{protocolAddress.AddressWithPrefix.Address} if _, ok := n.endpoints[id]; ok { // Endpoint already exists. return nil, tcpip.ErrDuplicateAddress } netProto, ok := n.stack.networkProtocols[protocolAddress.Protocol] if !ok { return nil, tcpip.ErrUnknownProtocol } // Create the new network endpoint. ep, err := netProto.NewEndpoint(n.id, protocolAddress.AddressWithPrefix, n.stack, n, n.linkEP) if err != nil { return nil, err } isIPv6Unicast := protocolAddress.Protocol == header.IPv6ProtocolNumber && header.IsV6UnicastAddress(protocolAddress.AddressWithPrefix.Address) // If the address is an IPv6 address and it is a permanent address, // mark it as tentative so it goes through the DAD process. if isIPv6Unicast && kind == permanent { kind = permanentTentative } ref := &referencedNetworkEndpoint{ refs: 1, ep: ep, nic: n, protocol: protocolAddress.Protocol, kind: kind, configType: configType, } // Set up cache if link address resolution exists for this protocol. if n.linkEP.Capabilities()&CapabilityResolutionRequired != 0 { if _, ok := n.stack.linkAddrResolvers[protocolAddress.Protocol]; ok { ref.linkCache = n.stack } } // If we are adding an IPv6 unicast address, join the solicited-node // multicast address. if isIPv6Unicast { snmc := header.SolicitedNodeAddr(protocolAddress.AddressWithPrefix.Address) if err := n.joinGroupLocked(protocolAddress.Protocol, snmc); err != nil { return nil, err } } n.endpoints[id] = ref n.insertPrimaryEndpointLocked(ref, peb) // If we are adding a tentative IPv6 address, start DAD. if isIPv6Unicast && kind == permanentTentative { if err := n.ndp.startDuplicateAddressDetection(protocolAddress.AddressWithPrefix.Address, ref); err != nil { return nil, err } } return ref, nil } // AddAddress adds a new address to n, so that it starts accepting packets // targeted at the given address (and network protocol). func (n *NIC) AddAddress(protocolAddress tcpip.ProtocolAddress, peb PrimaryEndpointBehavior) *tcpip.Error { // Add the endpoint. n.mu.Lock() _, err := n.addPermanentAddressLocked(protocolAddress, peb) n.mu.Unlock() return err } // AllAddresses returns all addresses (primary and non-primary) associated with // this NIC. func (n *NIC) AllAddresses() []tcpip.ProtocolAddress { n.mu.RLock() defer n.mu.RUnlock() addrs := make([]tcpip.ProtocolAddress, 0, len(n.endpoints)) for nid, ref := range n.endpoints { // Don't include tentative, expired or temporary endpoints to // avoid confusion and prevent the caller from using those. switch ref.getKind() { case permanentTentative, permanentExpired, temporary: // TODO(b/140898488): Should tentative addresses be // returned? continue } addrs = append(addrs, tcpip.ProtocolAddress{ Protocol: ref.protocol, AddressWithPrefix: tcpip.AddressWithPrefix{ Address: nid.LocalAddress, PrefixLen: ref.ep.PrefixLen(), }, }) } return addrs } // PrimaryAddresses returns the primary addresses associated with this NIC. func (n *NIC) PrimaryAddresses() []tcpip.ProtocolAddress { n.mu.RLock() defer n.mu.RUnlock() var addrs []tcpip.ProtocolAddress for proto, list := range n.primary { for _, ref := range list { // Don't include tentative, expired or tempory endpoints // to avoid confusion and prevent the caller from using // those. switch ref.getKind() { case permanentTentative, permanentExpired, temporary: continue } addrs = append(addrs, tcpip.ProtocolAddress{ Protocol: proto, AddressWithPrefix: tcpip.AddressWithPrefix{ Address: ref.ep.ID().LocalAddress, PrefixLen: ref.ep.PrefixLen(), }, }) } } return addrs } // AddAddressRange adds a range of addresses to n, so that it starts accepting // packets targeted at the given addresses and network protocol. The range is // given by a subnet address, and all addresses contained in the subnet are // used except for the subnet address itself and the subnet's broadcast // address. func (n *NIC) AddAddressRange(protocol tcpip.NetworkProtocolNumber, subnet tcpip.Subnet) { n.mu.Lock() n.addressRanges = append(n.addressRanges, subnet) n.mu.Unlock() } // RemoveAddressRange removes the given address range from n. func (n *NIC) RemoveAddressRange(subnet tcpip.Subnet) { n.mu.Lock() // Use the same underlying array. tmp := n.addressRanges[:0] for _, sub := range n.addressRanges { if sub != subnet { tmp = append(tmp, sub) } } n.addressRanges = tmp n.mu.Unlock() } // Subnets returns the Subnets associated with this NIC. func (n *NIC) AddressRanges() []tcpip.Subnet { n.mu.RLock() defer n.mu.RUnlock() sns := make([]tcpip.Subnet, 0, len(n.addressRanges)+len(n.endpoints)) for nid := range n.endpoints { sn, err := tcpip.NewSubnet(nid.LocalAddress, tcpip.AddressMask(strings.Repeat("\xff", len(nid.LocalAddress)))) if err != nil { // This should never happen as the mask has been carefully crafted to // match the address. panic("Invalid endpoint subnet: " + err.Error()) } sns = append(sns, sn) } return append(sns, n.addressRanges...) } // insertPrimaryEndpointLocked adds r to n's primary endpoint list as required // by peb. // // n MUST be locked. func (n *NIC) insertPrimaryEndpointLocked(r *referencedNetworkEndpoint, peb PrimaryEndpointBehavior) { switch peb { case CanBePrimaryEndpoint: n.primary[r.protocol] = append(n.primary[r.protocol], r) case FirstPrimaryEndpoint: n.primary[r.protocol] = append([]*referencedNetworkEndpoint{r}, n.primary[r.protocol]...) } } func (n *NIC) removeEndpointLocked(r *referencedNetworkEndpoint) { id := *r.ep.ID() // Nothing to do if the reference has already been replaced with a different // one. This happens in the case where 1) this endpoint's ref count hit zero // and was waiting (on the lock) to be removed and 2) the same address was // re-added in the meantime by removing this endpoint from the list and // adding a new one. if n.endpoints[id] != r { return } if r.getKind() == permanent { panic("Reference count dropped to zero before being removed") } delete(n.endpoints, id) refs := n.primary[r.protocol] for i, ref := range refs { if ref == r { n.primary[r.protocol] = append(refs[:i], refs[i+1:]...) break } } r.ep.Close() } func (n *NIC) removeEndpoint(r *referencedNetworkEndpoint) { n.mu.Lock() n.removeEndpointLocked(r) n.mu.Unlock() } func (n *NIC) removePermanentAddressLocked(addr tcpip.Address) *tcpip.Error { r, ok := n.endpoints[NetworkEndpointID{addr}] if !ok { return tcpip.ErrBadLocalAddress } kind := r.getKind() if kind != permanent && kind != permanentTentative { return tcpip.ErrBadLocalAddress } isIPv6Unicast := r.protocol == header.IPv6ProtocolNumber && header.IsV6UnicastAddress(addr) if isIPv6Unicast { // If we are removing a tentative IPv6 unicast address, stop // DAD. if kind == permanentTentative { n.ndp.stopDuplicateAddressDetection(addr) } // If we are removing an address generated via SLAAC, cleanup // its SLAAC resources and notify the integrator. if r.configType == slaac { n.ndp.cleanupAutoGenAddrResourcesAndNotify(addr) } } r.setKind(permanentExpired) if !r.decRefLocked() { // The endpoint still has references to it. return nil } // At this point the endpoint is deleted. // If we are removing an IPv6 unicast address, leave the solicited-node // multicast address. if isIPv6Unicast { snmc := header.SolicitedNodeAddr(addr) if err := n.leaveGroupLocked(snmc); err != nil { return err } } return nil } // RemoveAddress removes an address from n. func (n *NIC) RemoveAddress(addr tcpip.Address) *tcpip.Error { n.mu.Lock() defer n.mu.Unlock() return n.removePermanentAddressLocked(addr) } // joinGroup adds a new endpoint for the given multicast address, if none // exists yet. Otherwise it just increments its count. func (n *NIC) joinGroup(protocol tcpip.NetworkProtocolNumber, addr tcpip.Address) *tcpip.Error { n.mu.Lock() defer n.mu.Unlock() return n.joinGroupLocked(protocol, addr) } // joinGroupLocked adds a new endpoint for the given multicast address, if none // exists yet. Otherwise it just increments its count. n MUST be locked before // joinGroupLocked is called. func (n *NIC) joinGroupLocked(protocol tcpip.NetworkProtocolNumber, addr tcpip.Address) *tcpip.Error { // TODO(b/143102137): When implementing MLD, make sure MLD packets are // not sent unless a valid link-local address is available for use on n // as an MLD packet's source address must be a link-local address as // outlined in RFC 3810 section 5. id := NetworkEndpointID{addr} joins := n.mcastJoins[id] if joins == 0 { netProto, ok := n.stack.networkProtocols[protocol] if !ok { return tcpip.ErrUnknownProtocol } if _, err := n.addPermanentAddressLocked(tcpip.ProtocolAddress{ Protocol: protocol, AddressWithPrefix: tcpip.AddressWithPrefix{ Address: addr, PrefixLen: netProto.DefaultPrefixLen(), }, }, NeverPrimaryEndpoint); err != nil { return err } } n.mcastJoins[id] = joins + 1 return nil } // leaveGroup decrements the count for the given multicast address, and when it // reaches zero removes the endpoint for this address. func (n *NIC) leaveGroup(addr tcpip.Address) *tcpip.Error { n.mu.Lock() defer n.mu.Unlock() return n.leaveGroupLocked(addr) } // leaveGroupLocked decrements the count for the given multicast address, and // when it reaches zero removes the endpoint for this address. n MUST be locked // before leaveGroupLocked is called. func (n *NIC) leaveGroupLocked(addr tcpip.Address) *tcpip.Error { id := NetworkEndpointID{addr} joins := n.mcastJoins[id] switch joins { case 0: // There are no joins with this address on this NIC. return tcpip.ErrBadLocalAddress case 1: // This is the last one, clean up. if err := n.removePermanentAddressLocked(addr); err != nil { return err } } n.mcastJoins[id] = joins - 1 return nil } func handlePacket(protocol tcpip.NetworkProtocolNumber, dst, src tcpip.Address, localLinkAddr, remotelinkAddr tcpip.LinkAddress, ref *referencedNetworkEndpoint, pkt tcpip.PacketBuffer) { r := makeRoute(protocol, dst, src, localLinkAddr, ref, false /* handleLocal */, false /* multicastLoop */) r.RemoteLinkAddress = remotelinkAddr ref.ep.HandlePacket(&r, pkt) ref.decRef() } // DeliverNetworkPacket finds the appropriate network protocol endpoint and // hands the packet over for further processing. This function is called when // the NIC receives a packet from the physical interface. // Note that the ownership of the slice backing vv is retained by the caller. // This rule applies only to the slice itself, not to the items of the slice; // the ownership of the items is not retained by the caller. func (n *NIC) DeliverNetworkPacket(linkEP LinkEndpoint, remote, local tcpip.LinkAddress, protocol tcpip.NetworkProtocolNumber, pkt tcpip.PacketBuffer) { n.stats.Rx.Packets.Increment() n.stats.Rx.Bytes.IncrementBy(uint64(pkt.Data.Size())) netProto, ok := n.stack.networkProtocols[protocol] if !ok { n.stack.stats.UnknownProtocolRcvdPackets.Increment() return } // If no local link layer address is provided, assume it was sent // directly to this NIC. if local == "" { local = n.linkEP.LinkAddress() } // Are any packet sockets listening for this network protocol? n.mu.RLock() packetEPs := n.packetEPs[protocol] // Check whether there are packet sockets listening for every protocol. // If we received a packet with protocol EthernetProtocolAll, then the // previous for loop will have handled it. if protocol != header.EthernetProtocolAll { packetEPs = append(packetEPs, n.packetEPs[header.EthernetProtocolAll]...) } n.mu.RUnlock() for _, ep := range packetEPs { ep.HandlePacket(n.id, local, protocol, pkt.Clone()) } if netProto.Number() == header.IPv4ProtocolNumber || netProto.Number() == header.IPv6ProtocolNumber { n.stack.stats.IP.PacketsReceived.Increment() } if len(pkt.Data.First()) < netProto.MinimumPacketSize() { n.stack.stats.MalformedRcvdPackets.Increment() return } src, dst := netProto.ParseAddresses(pkt.Data.First()) if ref := n.getRef(protocol, dst); ref != nil { handlePacket(protocol, dst, src, linkEP.LinkAddress(), remote, ref, pkt) return } // This NIC doesn't care about the packet. Find a NIC that cares about the // packet and forward it to the NIC. // // TODO: Should we be forwarding the packet even if promiscuous? if n.stack.Forwarding() { r, err := n.stack.FindRoute(0, "", dst, protocol, false /* multicastLoop */) if err != nil { n.stack.stats.IP.InvalidAddressesReceived.Increment() return } defer r.Release() r.LocalLinkAddress = n.linkEP.LinkAddress() r.RemoteLinkAddress = remote // Found a NIC. n := r.ref.nic n.mu.RLock() ref, ok := n.endpoints[NetworkEndpointID{dst}] ok = ok && ref.isValidForOutgoing() && ref.tryIncRef() n.mu.RUnlock() if ok { r.RemoteAddress = src // TODO(b/123449044): Update the source NIC as well. ref.ep.HandlePacket(&r, pkt) ref.decRef() } else { // n doesn't have a destination endpoint. // Send the packet out of n. pkt.Header = buffer.NewPrependableFromView(pkt.Data.First()) pkt.Data.RemoveFirst() // TODO(b/128629022): use route.WritePacket. if err := n.linkEP.WritePacket(&r, nil /* gso */, protocol, pkt); err != nil { r.Stats().IP.OutgoingPacketErrors.Increment() } else { n.stats.Tx.Packets.Increment() n.stats.Tx.Bytes.IncrementBy(uint64(pkt.Header.UsedLength() + pkt.Data.Size())) } } return } // If a packet socket handled the packet, don't treat it as invalid. if len(packetEPs) == 0 { n.stack.stats.IP.InvalidAddressesReceived.Increment() } } // DeliverTransportPacket delivers the packets to the appropriate transport // protocol endpoint. func (n *NIC) DeliverTransportPacket(r *Route, protocol tcpip.TransportProtocolNumber, pkt tcpip.PacketBuffer) { state, ok := n.stack.transportProtocols[protocol] if !ok { n.stack.stats.UnknownProtocolRcvdPackets.Increment() return } transProto := state.proto // Raw socket packets are delivered based solely on the transport // protocol number. We do not inspect the payload to ensure it's // validly formed. n.stack.demux.deliverRawPacket(r, protocol, pkt) if len(pkt.Data.First()) < transProto.MinimumPacketSize() { n.stack.stats.MalformedRcvdPackets.Increment() return } srcPort, dstPort, err := transProto.ParsePorts(pkt.Data.First()) if err != nil { n.stack.stats.MalformedRcvdPackets.Increment() return } id := TransportEndpointID{dstPort, r.LocalAddress, srcPort, r.RemoteAddress} if n.stack.demux.deliverPacket(r, protocol, pkt, id) { return } // Try to deliver to per-stack default handler. if state.defaultHandler != nil { if state.defaultHandler(r, id, pkt) { return } } // We could not find an appropriate destination for this packet, so // deliver it to the global handler. if !transProto.HandleUnknownDestinationPacket(r, id, pkt) { n.stack.stats.MalformedRcvdPackets.Increment() } } // DeliverTransportControlPacket delivers control packets to the appropriate // transport protocol endpoint. func (n *NIC) DeliverTransportControlPacket(local, remote tcpip.Address, net tcpip.NetworkProtocolNumber, trans tcpip.TransportProtocolNumber, typ ControlType, extra uint32, pkt tcpip.PacketBuffer) { state, ok := n.stack.transportProtocols[trans] if !ok { return } transProto := state.proto // ICMPv4 only guarantees that 8 bytes of the transport protocol will // be present in the payload. We know that the ports are within the // first 8 bytes for all known transport protocols. if len(pkt.Data.First()) < 8 { return } srcPort, dstPort, err := transProto.ParsePorts(pkt.Data.First()) if err != nil { return } id := TransportEndpointID{srcPort, local, dstPort, remote} if n.stack.demux.deliverControlPacket(n, net, trans, typ, extra, pkt, id) { return } } // ID returns the identifier of n. func (n *NIC) ID() tcpip.NICID { return n.id } // Stack returns the instance of the Stack that owns this NIC. func (n *NIC) Stack() *Stack { return n.stack } // isAddrTentative returns true if addr is tentative on n. // // Note that if addr is not associated with n, then this function will return // false. It will only return true if the address is associated with the NIC // AND it is tentative. func (n *NIC) isAddrTentative(addr tcpip.Address) bool { ref, ok := n.endpoints[NetworkEndpointID{addr}] if !ok { return false } return ref.getKind() == permanentTentative } // dupTentativeAddrDetected attempts to inform n that a tentative addr // is a duplicate on a link. // // dupTentativeAddrDetected will delete the tentative address if it exists. func (n *NIC) dupTentativeAddrDetected(addr tcpip.Address) *tcpip.Error { n.mu.Lock() defer n.mu.Unlock() ref, ok := n.endpoints[NetworkEndpointID{addr}] if !ok { return tcpip.ErrBadAddress } if ref.getKind() != permanentTentative { return tcpip.ErrInvalidEndpointState } return n.removePermanentAddressLocked(addr) } // setNDPConfigs sets the NDP configurations for n. // // Note, if c contains invalid NDP configuration values, it will be fixed to // use default values for the erroneous values. func (n *NIC) setNDPConfigs(c NDPConfigurations) { c.validate() n.mu.Lock() n.ndp.configs = c n.mu.Unlock() } // handleNDPRA handles an NDP Router Advertisement message that arrived on n. func (n *NIC) handleNDPRA(ip tcpip.Address, ra header.NDPRouterAdvert) { n.mu.Lock() defer n.mu.Unlock() n.ndp.handleRA(ip, ra) } type networkEndpointKind int32 const ( // A permanentTentative endpoint is a permanent address that is not yet // considered to be fully bound to an interface in the traditional // sense. That is, the address is associated with a NIC, but packets // destined to the address MUST NOT be accepted and MUST be silently // dropped, and the address MUST NOT be used as a source address for // outgoing packets. For IPv6, addresses will be of this kind until // NDP's Duplicate Address Detection has resolved, or be deleted if // the process results in detecting a duplicate address. permanentTentative networkEndpointKind = iota // A permanent endpoint is created by adding a permanent address (vs. a // temporary one) to the NIC. Its reference count is biased by 1 to avoid // removal when no route holds a reference to it. It is removed by explicitly // removing the permanent address from the NIC. permanent // An expired permanent endpoint is a permanent endpoint that had its address // removed from the NIC, and it is waiting to be removed once no more routes // hold a reference to it. This is achieved by decreasing its reference count // by 1. If its address is re-added before the endpoint is removed, its type // changes back to permanent and its reference count increases by 1 again. permanentExpired // A temporary endpoint is created for spoofing outgoing packets, or when in // promiscuous mode and accepting incoming packets that don't match any // permanent endpoint. Its reference count is not biased by 1 and the // endpoint is removed immediately when no more route holds a reference to // it. A temporary endpoint can be promoted to permanent if its address // is added permanently. temporary ) func (n *NIC) registerPacketEndpoint(netProto tcpip.NetworkProtocolNumber, ep PacketEndpoint) *tcpip.Error { n.mu.Lock() defer n.mu.Unlock() eps, ok := n.packetEPs[netProto] if !ok { return tcpip.ErrNotSupported } n.packetEPs[netProto] = append(eps, ep) return nil } func (n *NIC) unregisterPacketEndpoint(netProto tcpip.NetworkProtocolNumber, ep PacketEndpoint) { n.mu.Lock() defer n.mu.Unlock() eps, ok := n.packetEPs[netProto] if !ok { return } for i, epOther := range eps { if epOther == ep { n.packetEPs[netProto] = append(eps[:i], eps[i+1:]...) return } } } type networkEndpointConfigType int32 const ( // A statically configured endpoint is an address that was added by // some user-specified action (adding an explicit address, joining a // multicast group). static networkEndpointConfigType = iota // A slaac configured endpoint is an IPv6 endpoint that was // added by SLAAC as per RFC 4862 section 5.5.3. slaac ) type referencedNetworkEndpoint struct { ep NetworkEndpoint nic *NIC protocol tcpip.NetworkProtocolNumber // linkCache is set if link address resolution is enabled for this // protocol. Set to nil otherwise. linkCache LinkAddressCache // refs is counting references held for this endpoint. When refs hits zero it // triggers the automatic removal of the endpoint from the NIC. refs int32 // networkEndpointKind must only be accessed using {get,set}Kind(). kind networkEndpointKind // configType is the method that was used to configure this endpoint. // This must never change after the endpoint is added to a NIC. configType networkEndpointConfigType } func (r *referencedNetworkEndpoint) getKind() networkEndpointKind { return networkEndpointKind(atomic.LoadInt32((*int32)(&r.kind))) } func (r *referencedNetworkEndpoint) setKind(kind networkEndpointKind) { atomic.StoreInt32((*int32)(&r.kind), int32(kind)) } // isValidForOutgoing returns true if the endpoint can be used to send out a // packet. It requires the endpoint to not be marked expired (i.e., its address // has been removed), or the NIC to be in spoofing mode. func (r *referencedNetworkEndpoint) isValidForOutgoing() bool { return r.getKind() != permanentExpired || r.nic.spoofing } // isValidForIncoming returns true if the endpoint can accept an incoming // packet. It requires the endpoint to not be marked expired (i.e., its address // has been removed), or the NIC to be in promiscuous mode. func (r *referencedNetworkEndpoint) isValidForIncoming() bool { return r.getKind() != permanentExpired || r.nic.promiscuous } // decRef decrements the ref count and cleans up the endpoint once it reaches // zero. func (r *referencedNetworkEndpoint) decRef() { if atomic.AddInt32(&r.refs, -1) == 0 { r.nic.removeEndpoint(r) } } // decRefLocked is the same as decRef but assumes that the NIC.mu mutex is // locked. Returns true if the endpoint was removed. func (r *referencedNetworkEndpoint) decRefLocked() bool { if atomic.AddInt32(&r.refs, -1) == 0 { r.nic.removeEndpointLocked(r) return true } return false } // incRef increments the ref count. It must only be called when the caller is // known to be holding a reference to the endpoint, otherwise tryIncRef should // be used. func (r *referencedNetworkEndpoint) incRef() { atomic.AddInt32(&r.refs, 1) } // tryIncRef attempts to increment the ref count from n to n+1, but only if n is // not zero. That is, it will increment the count if the endpoint is still // alive, and do nothing if it has already been clean up. func (r *referencedNetworkEndpoint) tryIncRef() bool { for { v := atomic.LoadInt32(&r.refs) if v == 0 { return false } if atomic.CompareAndSwapInt32(&r.refs, v, v+1) { return true } } } // stack returns the Stack instance that owns the underlying endpoint. func (r *referencedNetworkEndpoint) stack() *Stack { return r.nic.stack }