// Copyright 2019 The gVisor Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package stack import ( "fmt" "log" "time" "gvisor.dev/gvisor/pkg/tcpip" "gvisor.dev/gvisor/pkg/tcpip/buffer" "gvisor.dev/gvisor/pkg/tcpip/header" ) const ( // defaultDupAddrDetectTransmits is the default number of NDP Neighbor // Solicitation messages to send when doing Duplicate Address Detection // for a tentative address. // // Default = 1 (from RFC 4862 section 5.1) defaultDupAddrDetectTransmits = 1 // defaultRetransmitTimer is the default amount of time to wait between // sending NDP Neighbor solicitation messages. // // Default = 1s (from RFC 4861 section 10). defaultRetransmitTimer = time.Second // defaultHandleRAs is the default configuration for whether or not to // handle incoming Router Advertisements as a host. // // Default = true. defaultHandleRAs = true // defaultDiscoverDefaultRouters is the default configuration for // whether or not to discover default routers from incoming Router // Advertisements, as a host. // // Default = true. defaultDiscoverDefaultRouters = true // defaultDiscoverOnLinkPrefixes is the default configuration for // whether or not to discover on-link prefixes from incoming Router // Advertisements' Prefix Information option, as a host. // // Default = true. defaultDiscoverOnLinkPrefixes = true // defaultAutoGenGlobalAddresses is the default configuration for // whether or not to generate global IPv6 addresses in response to // receiving a new Prefix Information option with its Autonomous // Address AutoConfiguration flag set, as a host. // // Default = true. defaultAutoGenGlobalAddresses = true // minimumRetransmitTimer is the minimum amount of time to wait between // sending NDP Neighbor solicitation messages. Note, RFC 4861 does // not impose a minimum Retransmit Timer, but we do here to make sure // the messages are not sent all at once. We also come to this value // because in the RetransmitTimer field of a Router Advertisement, a // value of 0 means unspecified, so the smallest valid value is 1. // Note, the unit of the RetransmitTimer field in the Router // Advertisement is milliseconds. // // Min = 1ms. minimumRetransmitTimer = time.Millisecond // MaxDiscoveredDefaultRouters is the maximum number of discovered // default routers. The stack should stop discovering new routers after // discovering MaxDiscoveredDefaultRouters routers. // // This value MUST be at minimum 2 as per RFC 4861 section 6.3.4, and // SHOULD be more. // // Max = 10. MaxDiscoveredDefaultRouters = 10 // MaxDiscoveredOnLinkPrefixes is the maximum number of discovered // on-link prefixes. The stack should stop discovering new on-link // prefixes after discovering MaxDiscoveredOnLinkPrefixes on-link // prefixes. // // Max = 10. MaxDiscoveredOnLinkPrefixes = 10 // validPrefixLenForAutoGen is the expected prefix length that an // address can be generated for. Must be 64 bits as the interface // identifier (IID) is 64 bits and an IPv6 address is 128 bits, so // 128 - 64 = 64. validPrefixLenForAutoGen = 64 ) var ( // MinPrefixInformationValidLifetimeForUpdate is the minimum Valid // Lifetime to update the valid lifetime of a generated address by // SLAAC. // // This is exported as a variable (instead of a constant) so tests // can update it to a smaller value. // // Min = 2hrs. MinPrefixInformationValidLifetimeForUpdate = 2 * time.Hour ) // NDPDispatcher is the interface integrators of netstack must implement to // receive and handle NDP related events. type NDPDispatcher interface { // OnDuplicateAddressDetectionStatus will be called when the DAD process // for an address (addr) on a NIC (with ID nicID) completes. resolved // will be set to true if DAD completed successfully (no duplicate addr // detected); false otherwise (addr was detected to be a duplicate on // the link the NIC is a part of, or it was stopped for some other // reason, such as the address being removed). If an error occured // during DAD, err will be set and resolved must be ignored. // // This function is permitted to block indefinitely without interfering // with the stack's operation. OnDuplicateAddressDetectionStatus(nicID tcpip.NICID, addr tcpip.Address, resolved bool, err *tcpip.Error) // OnDefaultRouterDiscovered will be called when a new default router is // discovered. Implementations must return true if the newly discovered // router should be remembered. // // This function is not permitted to block indefinitely. This function // is also not permitted to call into the stack. OnDefaultRouterDiscovered(nicID tcpip.NICID, addr tcpip.Address) bool // OnDefaultRouterInvalidated will be called when a discovered default // router that was remembered is invalidated. // // This function is not permitted to block indefinitely. This function // is also not permitted to call into the stack. OnDefaultRouterInvalidated(nicID tcpip.NICID, addr tcpip.Address) // OnOnLinkPrefixDiscovered will be called when a new on-link prefix is // discovered. Implementations must return true if the newly discovered // on-link prefix should be remembered. // // This function is not permitted to block indefinitely. This function // is also not permitted to call into the stack. OnOnLinkPrefixDiscovered(nicID tcpip.NICID, prefix tcpip.Subnet) bool // OnOnLinkPrefixInvalidated will be called when a discovered on-link // prefix that was remembered is invalidated. // // This function is not permitted to block indefinitely. This function // is also not permitted to call into the stack. OnOnLinkPrefixInvalidated(nicID tcpip.NICID, prefix tcpip.Subnet) // OnAutoGenAddress will be called when a new prefix with its // autonomous address-configuration flag set has been received and SLAAC // has been performed. Implementations may prevent the stack from // assigning the address to the NIC by returning false. // // This function is not permitted to block indefinitely. It must not // call functions on the stack itself. OnAutoGenAddress(tcpip.NICID, tcpip.AddressWithPrefix) bool // OnAutoGenAddressInvalidated will be called when an auto-generated // address (as part of SLAAC) has been invalidated. // // This function is not permitted to block indefinitely. It must not // call functions on the stack itself. OnAutoGenAddressInvalidated(tcpip.NICID, tcpip.AddressWithPrefix) // OnRecursiveDNSServerOption will be called when an NDP option with // recursive DNS servers has been received. Note, addrs may contain // link-local addresses. // // It is up to the caller to use the DNS Servers only for their valid // lifetime. OnRecursiveDNSServerOption may be called for new or // already known DNS servers. If called with known DNS servers, their // valid lifetimes must be refreshed to lifetime (it may be increased, // decreased, or completely invalidated when lifetime = 0). OnRecursiveDNSServerOption(nicID tcpip.NICID, addrs []tcpip.Address, lifetime time.Duration) } // NDPConfigurations is the NDP configurations for the netstack. type NDPConfigurations struct { // The number of Neighbor Solicitation messages to send when doing // Duplicate Address Detection for a tentative address. // // Note, a value of zero effectively disables DAD. DupAddrDetectTransmits uint8 // The amount of time to wait between sending Neighbor solicitation // messages. // // Must be greater than 0.5s. RetransmitTimer time.Duration // HandleRAs determines whether or not Router Advertisements will be // processed. HandleRAs bool // DiscoverDefaultRouters determines whether or not default routers will // be discovered from Router Advertisements. This configuration is // ignored if HandleRAs is false. DiscoverDefaultRouters bool // DiscoverOnLinkPrefixes determines whether or not on-link prefixes // will be discovered from Router Advertisements' Prefix Information // option. This configuration is ignored if HandleRAs is false. DiscoverOnLinkPrefixes bool // AutoGenGlobalAddresses determines whether or not global IPv6 // addresses will be generated for a NIC in response to receiving a new // Prefix Information option with its Autonomous Address // AutoConfiguration flag set, as a host, as per RFC 4862 (SLAAC). // // Note, if an address was already generated for some unique prefix, as // part of SLAAC, this option does not affect whether or not the // lifetime(s) of the generated address changes; this option only // affects the generation of new addresses as part of SLAAC. AutoGenGlobalAddresses bool } // DefaultNDPConfigurations returns an NDPConfigurations populated with // default values. func DefaultNDPConfigurations() NDPConfigurations { return NDPConfigurations{ DupAddrDetectTransmits: defaultDupAddrDetectTransmits, RetransmitTimer: defaultRetransmitTimer, HandleRAs: defaultHandleRAs, DiscoverDefaultRouters: defaultDiscoverDefaultRouters, DiscoverOnLinkPrefixes: defaultDiscoverOnLinkPrefixes, AutoGenGlobalAddresses: defaultAutoGenGlobalAddresses, } } // validate modifies an NDPConfigurations with valid values. If invalid values // are present in c, the corresponding default values will be used instead. // // If RetransmitTimer is less than minimumRetransmitTimer, then a value of // defaultRetransmitTimer will be used. func (c *NDPConfigurations) validate() { if c.RetransmitTimer < minimumRetransmitTimer { c.RetransmitTimer = defaultRetransmitTimer } } // ndpState is the per-interface NDP state. type ndpState struct { // The NIC this ndpState is for. nic *NIC // configs is the per-interface NDP configurations. configs NDPConfigurations // The DAD state to send the next NS message, or resolve the address. dad map[tcpip.Address]dadState // The default routers discovered through Router Advertisements. defaultRouters map[tcpip.Address]defaultRouterState // The on-link prefixes discovered through Router Advertisements' Prefix // Information option. onLinkPrefixes map[tcpip.Subnet]onLinkPrefixState // The addresses generated by SLAAC. autoGenAddresses map[tcpip.Address]autoGenAddressState } // dadState holds the Duplicate Address Detection timer and channel to signal // to the DAD goroutine that DAD should stop. type dadState struct { // The DAD timer to send the next NS message, or resolve the address. timer *time.Timer // Used to let the DAD timer know that it has been stopped. // // Must only be read from or written to while protected by the lock of // the NIC this dadState is associated with. done *bool } // defaultRouterState holds data associated with a default router discovered by // a Router Advertisement (RA). type defaultRouterState struct { invalidationTimer *time.Timer // Used to inform the timer not to invalidate the default router (R) in // a race condition (T1 is a goroutine that handles an RA from R and T2 // is the goroutine that handles R's invalidation timer firing): // T1: Receive a new RA from R // T1: Obtain the NIC's lock before processing the RA // T2: R's invalidation timer fires, and gets blocked on obtaining the // NIC's lock // T1: Refreshes/extends R's lifetime & releases NIC's lock // T2: Obtains NIC's lock & invalidates R immediately // // To resolve this, T1 will check to see if the timer already fired, and // inform the timer using doNotInvalidate to not invalidate R, so that // once T2 obtains the lock, it will see that it is set to true and do // nothing further. doNotInvalidate *bool } // onLinkPrefixState holds data associated with an on-link prefix discovered by // a Router Advertisement's Prefix Information option (PI) when the NDP // configurations was configured to do so. type onLinkPrefixState struct { invalidationTimer *time.Timer // Used to signal the timer not to invalidate the on-link prefix (P) in // a race condition (T1 is a goroutine that handles a PI for P and T2 // is the goroutine that handles P's invalidation timer firing): // T1: Receive a new PI for P // T1: Obtain the NIC's lock before processing the PI // T2: P's invalidation timer fires, and gets blocked on obtaining the // NIC's lock // T1: Refreshes/extends P's lifetime & releases NIC's lock // T2: Obtains NIC's lock & invalidates P immediately // // To resolve this, T1 will check to see if the timer already fired, and // inform the timer using doNotInvalidate to not invalidate P, so that // once T2 obtains the lock, it will see that it is set to true and do // nothing further. doNotInvalidate *bool } // autoGenAddressState holds data associated with an address generated via // SLAAC. type autoGenAddressState struct { invalidationTimer *time.Timer // Used to signal the timer not to invalidate the SLAAC address (A) in // a race condition (T1 is a goroutine that handles a PI for A and T2 // is the goroutine that handles A's invalidation timer firing): // T1: Receive a new PI for A // T1: Obtain the NIC's lock before processing the PI // T2: A's invalidation timer fires, and gets blocked on obtaining the // NIC's lock // T1: Refreshes/extends A's lifetime & releases NIC's lock // T2: Obtains NIC's lock & invalidates A immediately // // To resolve this, T1 will check to see if the timer already fired, and // inform the timer using doNotInvalidate to not invalidate A, so that // once T2 obtains the lock, it will see that it is set to true and do // nothing further. doNotInvalidate *bool // Nonzero only when the address is not valid forever (invalidationTimer // is not nil). validUntil time.Time } // startDuplicateAddressDetection performs Duplicate Address Detection. // // This function must only be called by IPv6 addresses that are currently // tentative. // // The NIC that ndp belongs to MUST be locked. func (ndp *ndpState) startDuplicateAddressDetection(addr tcpip.Address, ref *referencedNetworkEndpoint) *tcpip.Error { // addr must be a valid unicast IPv6 address. if !header.IsV6UnicastAddress(addr) { return tcpip.ErrAddressFamilyNotSupported } // Should not attempt to perform DAD on an address that is currently in // the DAD process. if _, ok := ndp.dad[addr]; ok { // Should never happen because we should only ever call this // function for newly created addresses. If we attemped to // "add" an address that already existed, we would returned an // error since we attempted to add a duplicate address, or its // reference count would have been increased without doing the // work that would have been done for an address that was brand // new. See NIC.addPermanentAddressLocked. panic(fmt.Sprintf("ndpdad: already performing DAD for addr %s on NIC(%d)", addr, ndp.nic.ID())) } remaining := ndp.configs.DupAddrDetectTransmits { done, err := ndp.doDuplicateAddressDetection(addr, remaining, ref) if err != nil { return err } if done { return nil } } remaining-- var done bool var timer *time.Timer timer = time.AfterFunc(ndp.configs.RetransmitTimer, func() { var d bool var err *tcpip.Error // doDadIteration does a single iteration of the DAD loop. // // Returns true if the integrator needs to be informed of DAD // completing. doDadIteration := func() bool { ndp.nic.mu.Lock() defer ndp.nic.mu.Unlock() if done { // If we reach this point, it means that the DAD // timer fired after another goroutine already // obtained the NIC lock and stopped DAD before // this function obtained the NIC lock. Simply // return here and do nothing further. return false } ref, ok := ndp.nic.endpoints[NetworkEndpointID{addr}] if !ok { // This should never happen. // We should have an endpoint for addr since we // are still performing DAD on it. If the // endpoint does not exist, but we are doing DAD // on it, then we started DAD at some point, but // forgot to stop it when the endpoint was // deleted. panic(fmt.Sprintf("ndpdad: unrecognized addr %s for NIC(%d)", addr, ndp.nic.ID())) } d, err = ndp.doDuplicateAddressDetection(addr, remaining, ref) if err != nil || d { delete(ndp.dad, addr) if err != nil { log.Printf("ndpdad: Error occured during DAD iteration for addr (%s) on NIC(%d); err = %s", addr, ndp.nic.ID(), err) } // Let the integrator know DAD has completed. return true } remaining-- timer.Reset(ndp.nic.stack.ndpConfigs.RetransmitTimer) return false } if doDadIteration() && ndp.nic.stack.ndpDisp != nil { ndp.nic.stack.ndpDisp.OnDuplicateAddressDetectionStatus(ndp.nic.ID(), addr, d, err) } }) ndp.dad[addr] = dadState{ timer: timer, done: &done, } return nil } // doDuplicateAddressDetection is called on every iteration of the timer, and // when DAD starts. // // It handles resolving the address (if there are no more NS to send), or // sending the next NS if there are more NS to send. // // This function must only be called by IPv6 addresses that are currently // tentative. // // The NIC that ndp belongs to (n) MUST be locked. // // Returns true if DAD has resolved; false if DAD is still ongoing. func (ndp *ndpState) doDuplicateAddressDetection(addr tcpip.Address, remaining uint8, ref *referencedNetworkEndpoint) (bool, *tcpip.Error) { if ref.getKind() != permanentTentative { // The endpoint should still be marked as tentative // since we are still performing DAD on it. panic(fmt.Sprintf("ndpdad: addr %s is not tentative on NIC(%d)", addr, ndp.nic.ID())) } if remaining == 0 { // DAD has resolved. ref.setKind(permanent) return true, nil } // Send a new NS. snmc := header.SolicitedNodeAddr(addr) snmcRef, ok := ndp.nic.endpoints[NetworkEndpointID{snmc}] if !ok { // This should never happen as if we have the // address, we should have the solicited-node // address. panic(fmt.Sprintf("ndpdad: NIC(%d) is not in the solicited-node multicast group (%s) but it has addr %s", ndp.nic.ID(), snmc, addr)) } // Use the unspecified address as the source address when performing // DAD. r := makeRoute(header.IPv6ProtocolNumber, header.IPv6Any, snmc, ndp.nic.linkEP.LinkAddress(), snmcRef, false, false) hdr := buffer.NewPrependable(int(r.MaxHeaderLength()) + header.ICMPv6NeighborSolicitMinimumSize) pkt := header.ICMPv6(hdr.Prepend(header.ICMPv6NeighborSolicitMinimumSize)) pkt.SetType(header.ICMPv6NeighborSolicit) ns := header.NDPNeighborSolicit(pkt.NDPPayload()) ns.SetTargetAddress(addr) pkt.SetChecksum(header.ICMPv6Checksum(pkt, r.LocalAddress, r.RemoteAddress, buffer.VectorisedView{})) sent := r.Stats().ICMP.V6PacketsSent if err := r.WritePacket(nil, NetworkHeaderParams{Protocol: header.ICMPv6ProtocolNumber, TTL: header.NDPHopLimit, TOS: DefaultTOS}, tcpip.PacketBuffer{ Header: hdr, }); err != nil { sent.Dropped.Increment() return false, err } sent.NeighborSolicit.Increment() return false, nil } // stopDuplicateAddressDetection ends a running Duplicate Address Detection // process. Note, this may leave the DAD process for a tentative address in // such a state forever, unless some other external event resolves the DAD // process (receiving an NA from the true owner of addr, or an NS for addr // (implying another node is attempting to use addr)). It is up to the caller // of this function to handle such a scenario. Normally, addr will be removed // from n right after this function returns or the address successfully // resolved. // // The NIC that ndp belongs to MUST be locked. func (ndp *ndpState) stopDuplicateAddressDetection(addr tcpip.Address) { dad, ok := ndp.dad[addr] if !ok { // Not currently performing DAD on addr, just return. return } if dad.timer != nil { dad.timer.Stop() dad.timer = nil *dad.done = true dad.done = nil } delete(ndp.dad, addr) // Let the integrator know DAD did not resolve. if ndp.nic.stack.ndpDisp != nil { go ndp.nic.stack.ndpDisp.OnDuplicateAddressDetectionStatus(ndp.nic.ID(), addr, false, nil) } } // handleRA handles a Router Advertisement message that arrived on the NIC // this ndp is for. Does nothing if the NIC is configured to not handle RAs. // // The NIC that ndp belongs to and its associated stack MUST be locked. func (ndp *ndpState) handleRA(ip tcpip.Address, ra header.NDPRouterAdvert) { // Is the NIC configured to handle RAs at all? // // Currently, the stack does not determine router interface status on a // per-interface basis; it is a stack-wide configuration, so we check // stack's forwarding flag to determine if the NIC is a routing // interface. if !ndp.configs.HandleRAs || ndp.nic.stack.forwarding { return } // Is the NIC configured to discover default routers? if ndp.configs.DiscoverDefaultRouters { rtr, ok := ndp.defaultRouters[ip] rl := ra.RouterLifetime() switch { case !ok && rl != 0: // This is a new default router we are discovering. // // Only remember it if we currently know about less than // MaxDiscoveredDefaultRouters routers. if len(ndp.defaultRouters) < MaxDiscoveredDefaultRouters { ndp.rememberDefaultRouter(ip, rl) } case ok && rl != 0: // This is an already discovered default router. Update // the invalidation timer. timer := rtr.invalidationTimer // We should ALWAYS have an invalidation timer for a // discovered router. if timer == nil { panic("ndphandlera: RA invalidation timer should not be nil") } if !timer.Stop() { // If we reach this point, then we know the // timer fired after we already took the NIC // lock. Inform the timer not to invalidate the // router when it obtains the lock as we just // got a new RA that refreshes its lifetime to a // non-zero value. See // defaultRouterState.doNotInvalidate for more // details. *rtr.doNotInvalidate = true } timer.Reset(rl) case ok && rl == 0: // We know about the router but it is no longer to be // used as a default router so invalidate it. ndp.invalidateDefaultRouter(ip) } } // TODO(b/141556115): Do (RetransTimer, ReachableTime)) Parameter // Discovery. // We know the options is valid as far as wire format is concerned since // we got the Router Advertisement, as documented by this fn. Given this // we do not check the iterator for errors on calls to Next. it, _ := ra.Options().Iter(false) for opt, done, _ := it.Next(); !done; opt, done, _ = it.Next() { switch opt := opt.(type) { case header.NDPRecursiveDNSServer: if ndp.nic.stack.ndpDisp == nil { continue } ndp.nic.stack.ndpDisp.OnRecursiveDNSServerOption(ndp.nic.ID(), opt.Addresses(), opt.Lifetime()) case header.NDPPrefixInformation: prefix := opt.Subnet() // Is the prefix a link-local? if header.IsV6LinkLocalAddress(prefix.ID()) { // ...Yes, skip as per RFC 4861 section 6.3.4, // and RFC 4862 section 5.5.3.b (for SLAAC). continue } // Is the Prefix Length 0? if prefix.Prefix() == 0 { // ...Yes, skip as this is an invalid prefix // as all IPv6 addresses cannot be on-link. continue } if opt.OnLinkFlag() { ndp.handleOnLinkPrefixInformation(opt) } if opt.AutonomousAddressConfigurationFlag() { ndp.handleAutonomousPrefixInformation(opt) } } // TODO(b/141556115): Do (MTU) Parameter Discovery. } } // invalidateDefaultRouter invalidates a discovered default router. // // The NIC that ndp belongs to MUST be locked. func (ndp *ndpState) invalidateDefaultRouter(ip tcpip.Address) { rtr, ok := ndp.defaultRouters[ip] // Is the router still discovered? if !ok { // ...Nope, do nothing further. return } rtr.invalidationTimer.Stop() rtr.invalidationTimer = nil *rtr.doNotInvalidate = true rtr.doNotInvalidate = nil delete(ndp.defaultRouters, ip) // Let the integrator know a discovered default router is invalidated. if ndpDisp := ndp.nic.stack.ndpDisp; ndpDisp != nil { ndpDisp.OnDefaultRouterInvalidated(ndp.nic.ID(), ip) } } // rememberDefaultRouter remembers a newly discovered default router with IPv6 // link-local address ip with lifetime rl. // // The router identified by ip MUST NOT already be known by the NIC. // // The NIC that ndp belongs to MUST be locked. func (ndp *ndpState) rememberDefaultRouter(ip tcpip.Address, rl time.Duration) { ndpDisp := ndp.nic.stack.ndpDisp if ndpDisp == nil { return } // Inform the integrator when we discovered a default router. if !ndpDisp.OnDefaultRouterDiscovered(ndp.nic.ID(), ip) { // Informed by the integrator to not remember the router, do // nothing further. return } // Used to signal the timer not to invalidate the default router (R) in // a race condition. See defaultRouterState.doNotInvalidate for more // details. var doNotInvalidate bool ndp.defaultRouters[ip] = defaultRouterState{ invalidationTimer: time.AfterFunc(rl, func() { ndp.nic.stack.mu.Lock() defer ndp.nic.stack.mu.Unlock() ndp.nic.mu.Lock() defer ndp.nic.mu.Unlock() if doNotInvalidate { doNotInvalidate = false return } ndp.invalidateDefaultRouter(ip) }), doNotInvalidate: &doNotInvalidate, } } // rememberOnLinkPrefix remembers a newly discovered on-link prefix with IPv6 // address with prefix prefix with lifetime l. // // The prefix identified by prefix MUST NOT already be known. // // The NIC that ndp belongs to MUST be locked. func (ndp *ndpState) rememberOnLinkPrefix(prefix tcpip.Subnet, l time.Duration) { ndpDisp := ndp.nic.stack.ndpDisp if ndpDisp == nil { return } // Inform the integrator when we discovered an on-link prefix. if !ndpDisp.OnOnLinkPrefixDiscovered(ndp.nic.ID(), prefix) { // Informed by the integrator to not remember the prefix, do // nothing further. return } // Used to signal the timer not to invalidate the on-link prefix (P) in // a race condition. See onLinkPrefixState.doNotInvalidate for more // details. var doNotInvalidate bool var timer *time.Timer // Only create a timer if the lifetime is not infinite. if l < header.NDPInfiniteLifetime { timer = ndp.prefixInvalidationCallback(prefix, l, &doNotInvalidate) } ndp.onLinkPrefixes[prefix] = onLinkPrefixState{ invalidationTimer: timer, doNotInvalidate: &doNotInvalidate, } } // invalidateOnLinkPrefix invalidates a discovered on-link prefix. // // The NIC that ndp belongs to MUST be locked. func (ndp *ndpState) invalidateOnLinkPrefix(prefix tcpip.Subnet) { s, ok := ndp.onLinkPrefixes[prefix] // Is the on-link prefix still discovered? if !ok { // ...Nope, do nothing further. return } if s.invalidationTimer != nil { s.invalidationTimer.Stop() s.invalidationTimer = nil *s.doNotInvalidate = true } s.doNotInvalidate = nil delete(ndp.onLinkPrefixes, prefix) // Let the integrator know a discovered on-link prefix is invalidated. if ndpDisp := ndp.nic.stack.ndpDisp; ndpDisp != nil { ndpDisp.OnOnLinkPrefixInvalidated(ndp.nic.ID(), prefix) } } // prefixInvalidationCallback returns a new on-link prefix invalidation timer // for prefix that fires after vl. // // doNotInvalidate is used to signal the timer when it fires at the same time // that a prefix's valid lifetime gets refreshed. See // onLinkPrefixState.doNotInvalidate for more details. func (ndp *ndpState) prefixInvalidationCallback(prefix tcpip.Subnet, vl time.Duration, doNotInvalidate *bool) *time.Timer { return time.AfterFunc(vl, func() { ndp.nic.stack.mu.Lock() defer ndp.nic.stack.mu.Unlock() ndp.nic.mu.Lock() defer ndp.nic.mu.Unlock() if *doNotInvalidate { *doNotInvalidate = false return } ndp.invalidateOnLinkPrefix(prefix) }) } // handleOnLinkPrefixInformation handles a Prefix Information option with // its on-link flag set, as per RFC 4861 section 6.3.4. // // handleOnLinkPrefixInformation assumes that the prefix this pi is for is // not the link-local prefix and the on-link flag is set. // // The NIC that ndp belongs to MUST be locked. func (ndp *ndpState) handleOnLinkPrefixInformation(pi header.NDPPrefixInformation) { prefix := pi.Subnet() prefixState, ok := ndp.onLinkPrefixes[prefix] vl := pi.ValidLifetime() if !ok && vl == 0 { // Don't know about this prefix but it has a zero valid // lifetime, so just ignore. return } if !ok && vl != 0 { // This is a new on-link prefix we are discovering // // Only remember it if we currently know about less than // MaxDiscoveredOnLinkPrefixes on-link prefixes. if ndp.configs.DiscoverOnLinkPrefixes && len(ndp.onLinkPrefixes) < MaxDiscoveredOnLinkPrefixes { ndp.rememberOnLinkPrefix(prefix, vl) } return } if ok && vl == 0 { // We know about the on-link prefix, but it is // no longer to be considered on-link, so // invalidate it. ndp.invalidateOnLinkPrefix(prefix) return } // This is an already discovered on-link prefix with a // new non-zero valid lifetime. // Update the invalidation timer. timer := prefixState.invalidationTimer if timer == nil && vl >= header.NDPInfiniteLifetime { // Had infinite valid lifetime before and // continues to have an invalid lifetime. Do // nothing further. return } if timer != nil && !timer.Stop() { // If we reach this point, then we know the timer alread fired // after we took the NIC lock. Inform the timer to not // invalidate the prefix once it obtains the lock as we just // got a new PI that refreshes its lifetime to a non-zero value. // See onLinkPrefixState.doNotInvalidate for more details. *prefixState.doNotInvalidate = true } if vl >= header.NDPInfiniteLifetime { // Prefix is now valid forever so we don't need // an invalidation timer. prefixState.invalidationTimer = nil ndp.onLinkPrefixes[prefix] = prefixState return } if timer != nil { // We already have a timer so just reset it to // expire after the new valid lifetime. timer.Reset(vl) return } // We do not have a timer so just create a new one. prefixState.invalidationTimer = ndp.prefixInvalidationCallback(prefix, vl, prefixState.doNotInvalidate) ndp.onLinkPrefixes[prefix] = prefixState } // handleAutonomousPrefixInformation handles a Prefix Information option with // its autonomous flag set, as per RFC 4862 section 5.5.3. // // handleAutonomousPrefixInformation assumes that the prefix this pi is for is // not the link-local prefix and the autonomous flag is set. // // The NIC that ndp belongs to and its associated stack MUST be locked. func (ndp *ndpState) handleAutonomousPrefixInformation(pi header.NDPPrefixInformation) { vl := pi.ValidLifetime() pl := pi.PreferredLifetime() // If the preferred lifetime is greater than the valid lifetime, // silently ignore the Prefix Information option, as per RFC 4862 // section 5.5.3.c. if pl > vl { return } prefix := pi.Subnet() // Check if we already have an auto-generated address for prefix. for _, ref := range ndp.nic.endpoints { if ref.protocol != header.IPv6ProtocolNumber { continue } if ref.configType != slaac { continue } addr := ref.ep.ID().LocalAddress refAddrWithPrefix := tcpip.AddressWithPrefix{Address: addr, PrefixLen: ref.ep.PrefixLen()} if refAddrWithPrefix.Subnet() != prefix { continue } // // At this point, we know we are refreshing a SLAAC generated // IPv6 address with the prefix, prefix. Do the work as outlined // by RFC 4862 section 5.5.3.e. // addrState, ok := ndp.autoGenAddresses[addr] if !ok { panic(fmt.Sprintf("must have an autoGenAddressess entry for the SLAAC generated IPv6 address %s", addr)) } // TODO(b/143713887): Handle deprecating auto-generated address // after the preferred lifetime. // As per RFC 4862 section 5.5.3.e, the valid lifetime of the // address generated by SLAAC is as follows: // // 1) If the received Valid Lifetime is greater than 2 hours or // greater than RemainingLifetime, set the valid lifetime of // the address to the advertised Valid Lifetime. // // 2) If RemainingLifetime is less than or equal to 2 hours, // ignore the advertised Valid Lifetime. // // 3) Otherwise, reset the valid lifetime of the address to 2 // hours. // Handle the infinite valid lifetime separately as we do not // keep a timer in this case. if vl >= header.NDPInfiniteLifetime { if addrState.invalidationTimer != nil { // Valid lifetime was finite before, but now it // is valid forever. if !addrState.invalidationTimer.Stop() { *addrState.doNotInvalidate = true } addrState.invalidationTimer = nil addrState.validUntil = time.Time{} ndp.autoGenAddresses[addr] = addrState } return } var effectiveVl time.Duration var rl time.Duration // If the address was originally set to be valid forever, // assume the remaining time to be the maximum possible value. if addrState.invalidationTimer == nil { rl = header.NDPInfiniteLifetime } else { rl = time.Until(addrState.validUntil) } if vl > MinPrefixInformationValidLifetimeForUpdate || vl > rl { effectiveVl = vl } else if rl <= MinPrefixInformationValidLifetimeForUpdate { ndp.autoGenAddresses[addr] = addrState return } else { effectiveVl = MinPrefixInformationValidLifetimeForUpdate } if addrState.invalidationTimer == nil { addrState.invalidationTimer = ndp.autoGenAddrInvalidationTimer(addr, effectiveVl, addrState.doNotInvalidate) } else { if !addrState.invalidationTimer.Stop() { *addrState.doNotInvalidate = true } addrState.invalidationTimer.Reset(effectiveVl) } addrState.validUntil = time.Now().Add(effectiveVl) ndp.autoGenAddresses[addr] = addrState return } // We do not already have an address within the prefix, prefix. Do the // work as outlined by RFC 4862 section 5.5.3.d if n is configured // to auto-generated global addresses by SLAAC. // Are we configured to auto-generate new global addresses? if !ndp.configs.AutoGenGlobalAddresses { return } // If we do not already have an address for this prefix and the valid // lifetime is 0, no need to do anything further, as per RFC 4862 // section 5.5.3.d. if vl == 0 { return } // Make sure the prefix is valid (as far as its length is concerned) to // generate a valid IPv6 address from an interface identifier (IID), as // per RFC 4862 sectiion 5.5.3.d. if prefix.Prefix() != validPrefixLenForAutoGen { return } addrBytes := []byte(prefix.ID()) if oIID := ndp.nic.stack.opaqueIIDOpts; oIID.NICNameFromID != nil { addrBytes = header.AppendOpaqueInterfaceIdentifier(addrBytes[:header.IIDOffsetInIPv6Address], prefix, oIID.NICNameFromID(ndp.nic.ID(), ndp.nic.name), 0 /* dadCounter */, oIID.SecretKey) } else { // Only attempt to generate an interface-specific IID if we have a valid // link address. // // TODO(b/141011931): Validate a LinkEndpoint's link address (provided by // LinkEndpoint.LinkAddress) before reaching this point. linkAddr := ndp.nic.linkEP.LinkAddress() if !header.IsValidUnicastEthernetAddress(linkAddr) { return } // Generate an address within prefix from the modified EUI-64 of ndp's NIC's // Ethernet MAC address. header.EthernetAdddressToModifiedEUI64IntoBuf(linkAddr, addrBytes[header.IIDOffsetInIPv6Address:]) } addr := tcpip.Address(addrBytes) addrWithPrefix := tcpip.AddressWithPrefix{ Address: addr, PrefixLen: validPrefixLenForAutoGen, } // If the nic already has this address, do nothing further. if ndp.nic.hasPermanentAddrLocked(addr) { return } // Inform the integrator that we have a new SLAAC address. ndpDisp := ndp.nic.stack.ndpDisp if ndpDisp == nil { return } if !ndpDisp.OnAutoGenAddress(ndp.nic.ID(), addrWithPrefix) { // Informed by the integrator not to add the address. return } if _, err := ndp.nic.addAddressLocked(tcpip.ProtocolAddress{ Protocol: header.IPv6ProtocolNumber, AddressWithPrefix: addrWithPrefix, }, FirstPrimaryEndpoint, permanent, slaac); err != nil { panic(err) } // Setup the timers to deprecate and invalidate this newly generated // address. // TODO(b/143713887): Handle deprecating auto-generated addresses // after the preferred lifetime. var doNotInvalidate bool var vTimer *time.Timer if vl < header.NDPInfiniteLifetime { vTimer = ndp.autoGenAddrInvalidationTimer(addr, vl, &doNotInvalidate) } ndp.autoGenAddresses[addr] = autoGenAddressState{ invalidationTimer: vTimer, doNotInvalidate: &doNotInvalidate, validUntil: time.Now().Add(vl), } } // invalidateAutoGenAddress invalidates an auto-generated address. // // The NIC that ndp belongs to MUST be locked. func (ndp *ndpState) invalidateAutoGenAddress(addr tcpip.Address) { if !ndp.cleanupAutoGenAddrResourcesAndNotify(addr) { return } ndp.nic.removePermanentAddressLocked(addr) } // cleanupAutoGenAddrResourcesAndNotify cleans up an invalidated auto-generated // address's resources from ndp. If the stack has an NDP dispatcher, it will // be notified that addr has been invalidated. // // Returns true if ndp had resources for addr to cleanup. // // The NIC that ndp belongs to MUST be locked. func (ndp *ndpState) cleanupAutoGenAddrResourcesAndNotify(addr tcpip.Address) bool { state, ok := ndp.autoGenAddresses[addr] if !ok { return false } if state.invalidationTimer != nil { state.invalidationTimer.Stop() state.invalidationTimer = nil *state.doNotInvalidate = true } state.doNotInvalidate = nil delete(ndp.autoGenAddresses, addr) if ndpDisp := ndp.nic.stack.ndpDisp; ndpDisp != nil { ndpDisp.OnAutoGenAddressInvalidated(ndp.nic.ID(), tcpip.AddressWithPrefix{ Address: addr, PrefixLen: validPrefixLenForAutoGen, }) } return true } // autoGenAddrInvalidationTimer returns a new invalidation timer for an // auto-generated address that fires after vl. // // doNotInvalidate is used to inform the timer when it fires at the same time // that an auto-generated address's valid lifetime gets refreshed. See // autoGenAddrState.doNotInvalidate for more details. func (ndp *ndpState) autoGenAddrInvalidationTimer(addr tcpip.Address, vl time.Duration, doNotInvalidate *bool) *time.Timer { return time.AfterFunc(vl, func() { ndp.nic.mu.Lock() defer ndp.nic.mu.Unlock() if *doNotInvalidate { *doNotInvalidate = false return } ndp.invalidateAutoGenAddress(addr) }) } // cleanupHostOnlyState cleans up any state that is only useful for hosts. // // cleanupHostOnlyState MUST be called when ndp's NIC is transitioning from a // host to a router. This function will invalidate all discovered on-link // prefixes, discovered routers, and auto-generated addresses as routers do not // normally process Router Advertisements to discover default routers and // on-link prefixes, and auto-generate addresses via SLAAC. // // The NIC that ndp belongs to MUST be locked. func (ndp *ndpState) cleanupHostOnlyState() { for addr, _ := range ndp.autoGenAddresses { ndp.invalidateAutoGenAddress(addr) } if got := len(ndp.autoGenAddresses); got != 0 { log.Fatalf("ndp: still have auto-generated addresses after cleaning up, found = %d", got) } for prefix, _ := range ndp.onLinkPrefixes { ndp.invalidateOnLinkPrefix(prefix) } if got := len(ndp.onLinkPrefixes); got != 0 { log.Fatalf("ndp: still have discovered on-link prefixes after cleaning up, found = %d", got) } for router, _ := range ndp.defaultRouters { ndp.invalidateDefaultRouter(router) } if got := len(ndp.defaultRouters); got != 0 { log.Fatalf("ndp: still have discovered default routers after cleaning up, found = %d", got) } }