// Copyright 2019 The gVisor Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package stack import ( "fmt" "log" "time" "gvisor.dev/gvisor/pkg/tcpip" "gvisor.dev/gvisor/pkg/tcpip/buffer" "gvisor.dev/gvisor/pkg/tcpip/header" ) const ( // defaultDupAddrDetectTransmits is the default number of NDP Neighbor // Solicitation messages to send when doing Duplicate Address Detection // for a tentative address. // // Default = 1 (from RFC 4862 section 5.1) defaultDupAddrDetectTransmits = 1 // defaultRetransmitTimer is the default amount of time to wait between // sending NDP Neighbor solicitation messages. // // Default = 1s (from RFC 4861 section 10). defaultRetransmitTimer = time.Second // minimumRetransmitTimer is the minimum amount of time to wait between // sending NDP Neighbor solicitation messages. Note, RFC 4861 does // not impose a minimum Retransmit Timer, but we do here to make sure // the messages are not sent all at once. We also come to this value // because in the RetransmitTimer field of a Router Advertisement, a // value of 0 means unspecified, so the smallest valid value is 1. // Note, the unit of the RetransmitTimer field in the Router // Advertisement is milliseconds. // // Min = 1ms. minimumRetransmitTimer = time.Millisecond ) // NDPConfigurations is the NDP configurations for the netstack. type NDPConfigurations struct { // The number of Neighbor Solicitation messages to send when doing // Duplicate Address Detection for a tentative address. // // Note, a value of zero effectively disables DAD. DupAddrDetectTransmits uint8 // The amount of time to wait between sending Neighbor solicitation // messages. // // Must be greater than 0.5s. RetransmitTimer time.Duration } // DefaultNDPConfigurations returns an NDPConfigurations populated with // default values. func DefaultNDPConfigurations() NDPConfigurations { return NDPConfigurations{ DupAddrDetectTransmits: defaultDupAddrDetectTransmits, RetransmitTimer: defaultRetransmitTimer, } } // validate modifies an NDPConfigurations with valid values. If invalid values // are present in c, the corresponding default values will be used instead. // // If RetransmitTimer is less than minimumRetransmitTimer, then a value of // defaultRetransmitTimer will be used. func (c *NDPConfigurations) validate() { if c.RetransmitTimer < minimumRetransmitTimer { c.RetransmitTimer = defaultRetransmitTimer } } // ndpState is the per-interface NDP state. type ndpState struct { // The DAD state to send the next NS message, or resolve the address. dad map[tcpip.Address]dadState } // dadState holds the Duplicate Address Detection timer and channel to signal // to the DAD goroutine that DAD should stop. type dadState struct { // The DAD timer to send the next NS message, or resolve the address. timer *time.Timer // Used to let the DAD timer know that it has been stopped. // // Must only be read from or written to while protected by the lock of // the NIC this dadState is associated with. done *bool } // startDuplicateAddressDetection performs Duplicate Address Detection. // // This function must only be called by IPv6 addresses that are currently // tentative. // // The NIC that ndp belongs to (n) MUST be locked. func (ndp *ndpState) startDuplicateAddressDetection(n *NIC, addr tcpip.Address, ref *referencedNetworkEndpoint) *tcpip.Error { // addr must be a valid unicast IPv6 address. if !header.IsV6UnicastAddress(addr) { return tcpip.ErrAddressFamilyNotSupported } // Should not attempt to perform DAD on an address that is currently in // the DAD process. if _, ok := ndp.dad[addr]; ok { // Should never happen because we should only ever call this // function for newly created addresses. If we attemped to // "add" an address that already existed, we would returned an // error since we attempted to add a duplicate address, or its // reference count would have been increased without doing the // work that would have been done for an address that was brand // new. See NIC.addPermanentAddressLocked. panic(fmt.Sprintf("ndpdad: already performing DAD for addr %s on NIC(%d)", addr, n.ID())) } remaining := n.stack.ndpConfigs.DupAddrDetectTransmits { done, err := ndp.doDuplicateAddressDetection(n, addr, remaining, ref) if err != nil { return err } if done { return nil } } remaining-- var done bool var timer *time.Timer timer = time.AfterFunc(n.stack.ndpConfigs.RetransmitTimer, func() { n.mu.Lock() defer n.mu.Unlock() if done { // If we reach this point, it means that the DAD timer // fired after another goroutine already obtained the // NIC lock and stopped DAD before it this function // obtained the NIC lock. Simply return here and do // nothing further. return } ref, ok := n.endpoints[NetworkEndpointID{addr}] if !ok { // This should never happen. // We should have an endpoint for addr since we are // still performing DAD on it. If the endpoint does not // exist, but we are doing DAD on it, then we started // DAD at some point, but forgot to stop it when the // endpoint was deleted. panic(fmt.Sprintf("ndpdad: unrecognized addr %s for NIC(%d)", addr, n.ID())) } if done, err := ndp.doDuplicateAddressDetection(n, addr, remaining, ref); err != nil || done { if err != nil { log.Printf("ndpdad: Error occured during DAD iteration for addr (%s) on NIC(%d); err = %s", addr, n.ID(), err) } ndp.stopDuplicateAddressDetection(addr) return } timer.Reset(n.stack.ndpConfigs.RetransmitTimer) remaining-- }) ndp.dad[addr] = dadState{ timer: timer, done: &done, } return nil } // doDuplicateAddressDetection is called on every iteration of the timer, and // when DAD starts. // // It handles resolving the address (if there are no more NS to send), or // sending the next NS if there are more NS to send. // // This function must only be called by IPv6 addresses that are currently // tentative. // // The NIC that ndp belongs to (n) MUST be locked. // // Returns true if DAD has resolved; false if DAD is still ongoing. func (ndp *ndpState) doDuplicateAddressDetection(n *NIC, addr tcpip.Address, remaining uint8, ref *referencedNetworkEndpoint) (bool, *tcpip.Error) { if ref.getKind() != permanentTentative { // The endpoint should still be marked as tentative // since we are still performing DAD on it. panic(fmt.Sprintf("ndpdad: addr %s is not tentative on NIC(%d)", addr, n.ID())) } if remaining == 0 { // DAD has resolved. ref.setKind(permanent) return true, nil } // Send a new NS. snmc := header.SolicitedNodeAddr(addr) snmcRef, ok := n.endpoints[NetworkEndpointID{snmc}] if !ok { // This should never happen as if we have the // address, we should have the solicited-node // address. panic(fmt.Sprintf("ndpdad: NIC(%d) is not in the solicited-node multicast group (%s) but it has addr %s", n.ID(), snmc, addr)) } // Use the unspecified address as the source address when performing // DAD. r := makeRoute(header.IPv6ProtocolNumber, header.IPv6Any, snmc, n.linkEP.LinkAddress(), snmcRef, false, false) hdr := buffer.NewPrependable(int(r.MaxHeaderLength()) + header.ICMPv6NeighborSolicitMinimumSize) pkt := header.ICMPv6(hdr.Prepend(header.ICMPv6NeighborSolicitMinimumSize)) pkt.SetType(header.ICMPv6NeighborSolicit) ns := header.NDPNeighborSolicit(pkt.NDPPayload()) ns.SetTargetAddress(addr) pkt.SetChecksum(header.ICMPv6Checksum(pkt, r.LocalAddress, r.RemoteAddress, buffer.VectorisedView{})) sent := r.Stats().ICMP.V6PacketsSent if err := r.WritePacket(nil, hdr, buffer.VectorisedView{}, NetworkHeaderParams{Protocol: header.ICMPv6ProtocolNumber, TTL: header.NDPHopLimit, TOS: DefaultTOS}); err != nil { sent.Dropped.Increment() return false, err } sent.NeighborSolicit.Increment() return false, nil } // stopDuplicateAddressDetection ends a running Duplicate Address Detection // process. Note, this may leave the DAD process for a tentative address in // such a state forever, unless some other external event resolves the DAD // process (receiving an NA from the true owner of addr, or an NS for addr // (implying another node is attempting to use addr)). It is up to the caller // of this function to handle such a scenario. Normally, addr will be removed // from n right after this function returns or the address successfully // resolved. // // The NIC that ndp belongs to MUST be locked. func (ndp *ndpState) stopDuplicateAddressDetection(addr tcpip.Address) { dad, ok := ndp.dad[addr] if !ok { // Not currently performing DAD on addr, just return. return } if dad.timer != nil { dad.timer.Stop() dad.timer = nil *dad.done = true dad.done = nil } delete(ndp.dad, addr) return }