// Copyright 2018 The gVisor Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package ipv4 import ( "fmt" "gvisor.dev/gvisor/pkg/tcpip" "gvisor.dev/gvisor/pkg/tcpip/buffer" "gvisor.dev/gvisor/pkg/tcpip/header" "gvisor.dev/gvisor/pkg/tcpip/stack" ) // handleControl handles the case when an ICMP packet contains the headers of // the original packet that caused the ICMP one to be sent. This information is // used to find out which transport endpoint must be notified about the ICMP // packet. func (e *endpoint) handleControl(typ stack.ControlType, extra uint32, pkt *stack.PacketBuffer) { h, ok := pkt.Data.PullUp(header.IPv4MinimumSize) if !ok { return } hdr := header.IPv4(h) // We don't use IsValid() here because ICMP only requires that the IP // header plus 8 bytes of the transport header be included. So it's // likely that it is truncated, which would cause IsValid to return // false. // // Drop packet if it doesn't have the basic IPv4 header or if the // original source address doesn't match an address we own. src := hdr.SourceAddress() if e.protocol.stack.CheckLocalAddress(e.nic.ID(), ProtocolNumber, src) == 0 { return } hlen := int(hdr.HeaderLength()) if pkt.Data.Size() < hlen || hdr.FragmentOffset() != 0 { // We won't be able to handle this if it doesn't contain the // full IPv4 header, or if it's a fragment not at offset 0 // (because it won't have the transport header). return } // Skip the ip header, then deliver control message. pkt.Data.TrimFront(hlen) p := hdr.TransportProtocol() e.dispatcher.DeliverTransportControlPacket(src, hdr.DestinationAddress(), ProtocolNumber, p, typ, extra, pkt) } func (e *endpoint) handleICMP(r *stack.Route, pkt *stack.PacketBuffer) { stats := r.Stats() received := stats.ICMP.V4PacketsReceived // TODO(gvisor.dev/issue/170): ICMP packets don't have their // TransportHeader fields set. See icmp/protocol.go:protocol.Parse for a // full explanation. v, ok := pkt.Data.PullUp(header.ICMPv4MinimumSize) if !ok { received.Invalid.Increment() return } h := header.ICMPv4(v) // TODO(b/112892170): Meaningfully handle all ICMP types. switch h.Type() { case header.ICMPv4Echo: received.Echo.Increment() // Only send a reply if the checksum is valid. headerChecksum := h.Checksum() h.SetChecksum(0) calculatedChecksum := ^header.ChecksumVV(pkt.Data, 0 /* initial */) h.SetChecksum(headerChecksum) if calculatedChecksum != headerChecksum { // It's possible that a raw socket still expects to receive this. e.dispatcher.DeliverTransportPacket(r, header.ICMPv4ProtocolNumber, pkt) received.Invalid.Increment() return } // DeliverTransportPacket will take ownership of pkt so don't use it beyond // this point. Make a deep copy of the data before pkt gets sent as we will // be modifying fields. // // TODO(gvisor.dev/issue/4399): The copy may not be needed if there are no // waiting endpoints. Consider moving responsibility for doing the copy to // DeliverTransportPacket so that is is only done when needed. replyData := pkt.Data.ToOwnedView() replyIPHdr := header.IPv4(append(buffer.View(nil), pkt.NetworkHeader().View()...)) e.dispatcher.DeliverTransportPacket(r, header.ICMPv4ProtocolNumber, pkt) remoteLinkAddr := r.RemoteLinkAddress // As per RFC 1122 section 3.2.1.3, when a host sends any datagram, the IP // source address MUST be one of its own IP addresses (but not a broadcast // or multicast address). localAddr := r.LocalAddress if r.IsInboundBroadcast() || header.IsV4MulticastAddress(localAddr) { localAddr = "" } r, err := r.Stack().FindRoute(e.nic.ID(), localAddr, r.RemoteAddress, ProtocolNumber, false /* multicastLoop */) if err != nil { // If we cannot find a route to the destination, silently drop the packet. return } defer r.Release() // Use the remote link address from the incoming packet. r.ResolveWith(remoteLinkAddr) // TODO(gvisor.dev/issue/3810:) When adding protocol numbers into the // header information, we may have to change this code to handle the // ICMP header no longer being in the data buffer. // Because IP and ICMP are so closely intertwined, we need to handcraft our // IP header to be able to follow RFC 792. The wording on page 13 is as // follows: // IP Fields: // Addresses // The address of the source in an echo message will be the // destination of the echo reply message. To form an echo reply // message, the source and destination addresses are simply reversed, // the type code changed to 0, and the checksum recomputed. // // This was interpreted by early implementors to mean that all options must // be copied from the echo request IP header to the echo reply IP header // and this behaviour is still relied upon by some applications. // // Create a copy of the IP header we received, options and all, and change // The fields we need to alter. // // We need to produce the entire packet in the data segment in order to // use WriteHeaderIncludedPacket(). replyIPHdr.SetSourceAddress(r.LocalAddress) replyIPHdr.SetDestinationAddress(r.RemoteAddress) replyIPHdr.SetTTL(r.DefaultTTL()) replyICMPHdr := header.ICMPv4(replyData) replyICMPHdr.SetType(header.ICMPv4EchoReply) replyICMPHdr.SetChecksum(0) replyICMPHdr.SetChecksum(^header.Checksum(replyData, 0)) replyVV := buffer.View(replyIPHdr).ToVectorisedView() replyVV.AppendView(replyData) replyPkt := stack.NewPacketBuffer(stack.PacketBufferOptions{ ReserveHeaderBytes: int(r.MaxHeaderLength()), Data: replyVV, }) replyPkt.TransportProtocolNumber = header.ICMPv4ProtocolNumber // The checksum will be calculated so we don't need to do it here. sent := stats.ICMP.V4PacketsSent if err := r.WriteHeaderIncludedPacket(replyPkt); err != nil { sent.Dropped.Increment() return } sent.EchoReply.Increment() case header.ICMPv4EchoReply: received.EchoReply.Increment() e.dispatcher.DeliverTransportPacket(r, header.ICMPv4ProtocolNumber, pkt) case header.ICMPv4DstUnreachable: received.DstUnreachable.Increment() pkt.Data.TrimFront(header.ICMPv4MinimumSize) switch h.Code() { case header.ICMPv4HostUnreachable: e.handleControl(stack.ControlNoRoute, 0, pkt) case header.ICMPv4PortUnreachable: e.handleControl(stack.ControlPortUnreachable, 0, pkt) case header.ICMPv4FragmentationNeeded: mtu := uint32(h.MTU()) e.handleControl(stack.ControlPacketTooBig, calculateMTU(mtu), pkt) } case header.ICMPv4SrcQuench: received.SrcQuench.Increment() case header.ICMPv4Redirect: received.Redirect.Increment() case header.ICMPv4TimeExceeded: received.TimeExceeded.Increment() case header.ICMPv4ParamProblem: received.ParamProblem.Increment() case header.ICMPv4Timestamp: received.Timestamp.Increment() case header.ICMPv4TimestampReply: received.TimestampReply.Increment() case header.ICMPv4InfoRequest: received.InfoRequest.Increment() case header.ICMPv4InfoReply: received.InfoReply.Increment() default: received.Invalid.Increment() } } // ======= ICMP Error packet generation ========= // icmpReason is a marker interface for IPv4 specific ICMP errors. type icmpReason interface { isICMPReason() } // icmpReasonPortUnreachable is an error where the transport protocol has no // listener and no alternative means to inform the sender. type icmpReasonPortUnreachable struct{} func (*icmpReasonPortUnreachable) isICMPReason() {} // icmpReasonProtoUnreachable is an error where the transport protocol is // not supported. type icmpReasonProtoUnreachable struct{} func (*icmpReasonProtoUnreachable) isICMPReason() {} // returnError takes an error descriptor and generates the appropriate ICMP // error packet for IPv4 and sends it back to the remote device that sent // the problematic packet. It incorporates as much of that packet as // possible as well as any error metadata as is available. returnError // expects pkt to hold a valid IPv4 packet as per the wire format. func returnError(r *stack.Route, reason icmpReason, pkt *stack.PacketBuffer) *tcpip.Error { sent := r.Stats().ICMP.V4PacketsSent if !r.Stack().AllowICMPMessage() { sent.RateLimited.Increment() return nil } // We check we are responding only when we are allowed to. // See RFC 1812 section 4.3.2.7 (shown below). // // ========= // 4.3.2.7 When Not to Send ICMP Errors // // An ICMP error message MUST NOT be sent as the result of receiving: // // o An ICMP error message, or // // o A packet which fails the IP header validation tests described in // Section [5.2.2] (except where that section specifically permits // the sending of an ICMP error message), or // // o A packet destined to an IP broadcast or IP multicast address, or // // o A packet sent as a Link Layer broadcast or multicast, or // // o Any fragment of a datagram other then the first fragment (i.e., a // packet for which the fragment offset in the IP header is nonzero). // // TODO(gvisor.dev/issues/4058): Make sure we don't send ICMP errors in // response to a non-initial fragment, but it currently can not happen. if r.IsInboundBroadcast() || header.IsV4MulticastAddress(r.LocalAddress) || r.RemoteAddress == header.IPv4Any { return nil } networkHeader := pkt.NetworkHeader().View() transportHeader := pkt.TransportHeader().View() // Don't respond to icmp error packets. if header.IPv4(networkHeader).Protocol() == uint8(header.ICMPv4ProtocolNumber) { // TODO(gvisor.dev/issue/3810): // Unfortunately the current stack pretty much always has ICMPv4 headers // in the Data section of the packet but there is no guarantee that is the // case. If this is the case grab the header to make it like all other // packet types. When this is cleaned up the Consume should be removed. if transportHeader.IsEmpty() { var ok bool transportHeader, ok = pkt.TransportHeader().Consume(header.ICMPv4MinimumSize) if !ok { return nil } } else if transportHeader.Size() < header.ICMPv4MinimumSize { return nil } // We need to decide to explicitly name the packets we can respond to or // the ones we can not respond to. The decision is somewhat arbitrary and // if problems arise this could be reversed. It was judged less of a breach // of protocol to not respond to unknown non-error packets than to respond // to unknown error packets so we take the first approach. switch header.ICMPv4(transportHeader).Type() { case header.ICMPv4EchoReply, header.ICMPv4Echo, header.ICMPv4Timestamp, header.ICMPv4TimestampReply, header.ICMPv4InfoRequest, header.ICMPv4InfoReply: default: // Assume any type we don't know about may be an error type. return nil } } // Now work out how much of the triggering packet we should return. // As per RFC 1812 Section 4.3.2.3 // // ICMP datagram SHOULD contain as much of the original // datagram as possible without the length of the ICMP // datagram exceeding 576 bytes. // // NOTE: The above RFC referenced is different from the original // recommendation in RFC 1122 and RFC 792 where it mentioned that at // least 8 bytes of the payload must be included. Today linux and other // systems implement the RFC 1812 definition and not the original // requirement. We treat 8 bytes as the minimum but will try send more. mtu := int(r.MTU()) if mtu > header.IPv4MinimumProcessableDatagramSize { mtu = header.IPv4MinimumProcessableDatagramSize } headerLen := int(r.MaxHeaderLength()) + header.ICMPv4MinimumSize available := int(mtu) - headerLen if available < header.IPv4MinimumSize+header.ICMPv4MinimumErrorPayloadSize { return nil } payloadLen := networkHeader.Size() + transportHeader.Size() + pkt.Data.Size() if payloadLen > available { payloadLen = available } // The buffers used by pkt may be used elsewhere in the system. // For example, an AF_RAW or AF_PACKET socket may use what the transport // protocol considers an unreachable destination. Thus we deep copy pkt to // prevent multiple ownership and SR errors. The new copy is a vectorized // view with the entire incoming IP packet reassembled and truncated as // required. This is now the payload of the new ICMP packet and no longer // considered a packet in its own right. newHeader := append(buffer.View(nil), networkHeader...) newHeader = append(newHeader, transportHeader...) payload := newHeader.ToVectorisedView() payload.AppendView(pkt.Data.ToView()) payload.CapLength(payloadLen) icmpPkt := stack.NewPacketBuffer(stack.PacketBufferOptions{ ReserveHeaderBytes: headerLen, Data: payload, }) icmpPkt.TransportProtocolNumber = header.ICMPv4ProtocolNumber icmpHdr := header.ICMPv4(icmpPkt.TransportHeader().Push(header.ICMPv4MinimumSize)) switch reason.(type) { case *icmpReasonPortUnreachable: icmpHdr.SetCode(header.ICMPv4PortUnreachable) case *icmpReasonProtoUnreachable: icmpHdr.SetCode(header.ICMPv4ProtoUnreachable) default: panic(fmt.Sprintf("unsupported ICMP type %T", reason)) } icmpHdr.SetType(header.ICMPv4DstUnreachable) icmpHdr.SetChecksum(header.ICMPv4Checksum(icmpHdr, icmpPkt.Data)) counter := sent.DstUnreachable if err := r.WritePacket( nil, /* gso */ stack.NetworkHeaderParams{ Protocol: header.ICMPv4ProtocolNumber, TTL: r.DefaultTTL(), TOS: stack.DefaultTOS, }, icmpPkt, ); err != nil { sent.Dropped.Increment() return err } counter.Increment() return nil }