// Copyright 2018 The gVisor Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Package sniffer provides the implementation of data-link layer endpoints that // wrap another endpoint and logs inbound and outbound packets. // // Sniffer endpoints can be used in the networking stack by calling New(eID) to // create a new endpoint, where eID is the ID of the endpoint being wrapped, // and then passing it as an argument to Stack.CreateNIC(). package sniffer import ( "encoding/binary" "fmt" "io" "sync/atomic" "time" "gvisor.dev/gvisor/pkg/log" "gvisor.dev/gvisor/pkg/tcpip" "gvisor.dev/gvisor/pkg/tcpip/buffer" "gvisor.dev/gvisor/pkg/tcpip/header" "gvisor.dev/gvisor/pkg/tcpip/stack" ) // LogPackets is a flag used to enable or disable packet logging via the log // package. Valid values are 0 or 1. // // LogPackets must be accessed atomically. var LogPackets uint32 = 1 // LogPacketsToPCAP is a flag used to enable or disable logging packets to a // pcap writer. Valid values are 0 or 1. A writer must have been specified when the // sniffer was created for this flag to have effect. // // LogPacketsToPCAP must be accessed atomically. var LogPacketsToPCAP uint32 = 1 var transportProtocolMinSizes map[tcpip.TransportProtocolNumber]int = map[tcpip.TransportProtocolNumber]int{ header.ICMPv4ProtocolNumber: header.IPv4MinimumSize, header.ICMPv6ProtocolNumber: header.IPv6MinimumSize, header.UDPProtocolNumber: header.UDPMinimumSize, header.TCPProtocolNumber: header.TCPMinimumSize, } type endpoint struct { dispatcher stack.NetworkDispatcher lower stack.LinkEndpoint writer io.Writer maxPCAPLen uint32 } // New creates a new sniffer link-layer endpoint. It wraps around another // endpoint and logs packets and they traverse the endpoint. func New(lower stack.LinkEndpoint) stack.LinkEndpoint { return &endpoint{ lower: lower, } } func zoneOffset() (int32, error) { loc, err := time.LoadLocation("Local") if err != nil { return 0, err } date := time.Date(0, 0, 0, 0, 0, 0, 0, loc) _, offset := date.Zone() return int32(offset), nil } func writePCAPHeader(w io.Writer, maxLen uint32) error { offset, err := zoneOffset() if err != nil { return err } return binary.Write(w, binary.BigEndian, pcapHeader{ // From https://wiki.wireshark.org/Development/LibpcapFileFormat MagicNumber: 0xa1b2c3d4, VersionMajor: 2, VersionMinor: 4, Thiszone: offset, Sigfigs: 0, Snaplen: maxLen, Network: 101, // LINKTYPE_RAW }) } // NewWithWriter creates a new sniffer link-layer endpoint. It wraps around // another endpoint and logs packets as they traverse the endpoint. // // Packets are logged to writer in the pcap format. A sniffer created with this // function will not emit packets using the standard log package. // // snapLen is the maximum amount of a packet to be saved. Packets with a length // less than or equal to snapLen will be saved in their entirety. Longer // packets will be truncated to snapLen. func NewWithWriter(lower stack.LinkEndpoint, writer io.Writer, snapLen uint32) (stack.LinkEndpoint, error) { if err := writePCAPHeader(writer, snapLen); err != nil { return nil, err } return &endpoint{ lower: lower, writer: writer, maxPCAPLen: snapLen, }, nil } // DeliverNetworkPacket implements the stack.NetworkDispatcher interface. It is // called by the link-layer endpoint being wrapped when a packet arrives, and // logs the packet before forwarding to the actual dispatcher. func (e *endpoint) DeliverNetworkPacket(remote, local tcpip.LinkAddress, protocol tcpip.NetworkProtocolNumber, pkt *stack.PacketBuffer) { e.dumpPacket("recv", nil, protocol, pkt) e.dispatcher.DeliverNetworkPacket(remote, local, protocol, pkt) } // Attach implements the stack.LinkEndpoint interface. It saves the dispatcher // and registers with the lower endpoint as its dispatcher so that "e" is called // for inbound packets. func (e *endpoint) Attach(dispatcher stack.NetworkDispatcher) { e.dispatcher = dispatcher e.lower.Attach(e) } // IsAttached implements stack.LinkEndpoint.IsAttached. func (e *endpoint) IsAttached() bool { return e.dispatcher != nil } // MTU implements stack.LinkEndpoint.MTU. It just forwards the request to the // lower endpoint. func (e *endpoint) MTU() uint32 { return e.lower.MTU() } // Capabilities implements stack.LinkEndpoint.Capabilities. It just forwards the // request to the lower endpoint. func (e *endpoint) Capabilities() stack.LinkEndpointCapabilities { return e.lower.Capabilities() } // MaxHeaderLength implements the stack.LinkEndpoint interface. It just forwards // the request to the lower endpoint. func (e *endpoint) MaxHeaderLength() uint16 { return e.lower.MaxHeaderLength() } func (e *endpoint) LinkAddress() tcpip.LinkAddress { return e.lower.LinkAddress() } // GSOMaxSize returns the maximum GSO packet size. func (e *endpoint) GSOMaxSize() uint32 { if gso, ok := e.lower.(stack.GSOEndpoint); ok { return gso.GSOMaxSize() } return 0 } func (e *endpoint) dumpPacket(prefix string, gso *stack.GSO, protocol tcpip.NetworkProtocolNumber, pkt *stack.PacketBuffer) { writer := e.writer if writer == nil && atomic.LoadUint32(&LogPackets) == 1 { logPacket(prefix, protocol, pkt, gso) } if writer != nil && atomic.LoadUint32(&LogPacketsToPCAP) == 1 { totalLength := pkt.Header.UsedLength() + pkt.Data.Size() length := totalLength if max := int(e.maxPCAPLen); length > max { length = max } if err := binary.Write(writer, binary.BigEndian, newPCAPPacketHeader(uint32(length), uint32(totalLength))); err != nil { panic(err) } write := func(b []byte) { if len(b) > length { b = b[:length] } for len(b) != 0 { n, err := writer.Write(b) if err != nil { panic(err) } b = b[n:] length -= n } } write(pkt.Header.View()) for _, view := range pkt.Data.Views() { if length == 0 { break } write(view) } } } // WritePacket implements the stack.LinkEndpoint interface. It is called by // higher-level protocols to write packets; it just logs the packet and // forwards the request to the lower endpoint. func (e *endpoint) WritePacket(r *stack.Route, gso *stack.GSO, protocol tcpip.NetworkProtocolNumber, pkt *stack.PacketBuffer) *tcpip.Error { e.dumpPacket("send", gso, protocol, pkt) return e.lower.WritePacket(r, gso, protocol, pkt) } // WritePackets implements the stack.LinkEndpoint interface. It is called by // higher-level protocols to write packets; it just logs the packet and // forwards the request to the lower endpoint. func (e *endpoint) WritePackets(r *stack.Route, gso *stack.GSO, pkts stack.PacketBufferList, protocol tcpip.NetworkProtocolNumber) (int, *tcpip.Error) { for pkt := pkts.Front(); pkt != nil; pkt = pkt.Next() { e.dumpPacket("send", gso, protocol, pkt) } return e.lower.WritePackets(r, gso, pkts, protocol) } // WriteRawPacket implements stack.LinkEndpoint.WriteRawPacket. func (e *endpoint) WriteRawPacket(vv buffer.VectorisedView) *tcpip.Error { e.dumpPacket("send", nil, 0, &stack.PacketBuffer{ Data: vv, }) return e.lower.WriteRawPacket(vv) } // Wait implements stack.LinkEndpoint.Wait. func (e *endpoint) Wait() { e.lower.Wait() } func logPacket(prefix string, protocol tcpip.NetworkProtocolNumber, pkt *stack.PacketBuffer, gso *stack.GSO) { // Figure out the network layer info. var transProto uint8 src := tcpip.Address("unknown") dst := tcpip.Address("unknown") id := 0 size := uint16(0) var fragmentOffset uint16 var moreFragments bool // Create a clone of pkt, including any headers if present. Avoid allocating // backing memory for the clone. views := [8]buffer.View{} vv := buffer.NewVectorisedView(0, views[:0]) vv.AppendView(pkt.Header.View()) vv.Append(pkt.Data) switch protocol { case header.IPv4ProtocolNumber: hdr, ok := vv.PullUp(header.IPv4MinimumSize) if !ok { return } ipv4 := header.IPv4(hdr) fragmentOffset = ipv4.FragmentOffset() moreFragments = ipv4.Flags()&header.IPv4FlagMoreFragments == header.IPv4FlagMoreFragments src = ipv4.SourceAddress() dst = ipv4.DestinationAddress() transProto = ipv4.Protocol() size = ipv4.TotalLength() - uint16(ipv4.HeaderLength()) vv.TrimFront(int(ipv4.HeaderLength())) id = int(ipv4.ID()) case header.IPv6ProtocolNumber: hdr, ok := vv.PullUp(header.IPv6MinimumSize) if !ok { return } ipv6 := header.IPv6(hdr) src = ipv6.SourceAddress() dst = ipv6.DestinationAddress() transProto = ipv6.NextHeader() size = ipv6.PayloadLength() vv.TrimFront(header.IPv6MinimumSize) case header.ARPProtocolNumber: hdr, ok := vv.PullUp(header.ARPSize) if !ok { return } vv.TrimFront(header.ARPSize) arp := header.ARP(hdr) log.Infof( "%s arp %v (%v) -> %v (%v) valid:%v", prefix, tcpip.Address(arp.ProtocolAddressSender()), tcpip.LinkAddress(arp.HardwareAddressSender()), tcpip.Address(arp.ProtocolAddressTarget()), tcpip.LinkAddress(arp.HardwareAddressTarget()), arp.IsValid(), ) return default: log.Infof("%s unknown network protocol", prefix) return } // We aren't guaranteed to have a transport header - it's possible for // writes via raw endpoints to contain only network headers. if minSize, ok := transportProtocolMinSizes[tcpip.TransportProtocolNumber(transProto)]; ok && vv.Size() < minSize { log.Infof("%s %v -> %v transport protocol: %d, but no transport header found (possible raw packet)", prefix, src, dst, transProto) return } // Figure out the transport layer info. transName := "unknown" srcPort := uint16(0) dstPort := uint16(0) details := "" switch tcpip.TransportProtocolNumber(transProto) { case header.ICMPv4ProtocolNumber: transName = "icmp" hdr, ok := vv.PullUp(header.ICMPv4MinimumSize) if !ok { break } icmp := header.ICMPv4(hdr) icmpType := "unknown" if fragmentOffset == 0 { switch icmp.Type() { case header.ICMPv4EchoReply: icmpType = "echo reply" case header.ICMPv4DstUnreachable: icmpType = "destination unreachable" case header.ICMPv4SrcQuench: icmpType = "source quench" case header.ICMPv4Redirect: icmpType = "redirect" case header.ICMPv4Echo: icmpType = "echo" case header.ICMPv4TimeExceeded: icmpType = "time exceeded" case header.ICMPv4ParamProblem: icmpType = "param problem" case header.ICMPv4Timestamp: icmpType = "timestamp" case header.ICMPv4TimestampReply: icmpType = "timestamp reply" case header.ICMPv4InfoRequest: icmpType = "info request" case header.ICMPv4InfoReply: icmpType = "info reply" } } log.Infof("%s %s %v -> %v %s len:%d id:%04x code:%d", prefix, transName, src, dst, icmpType, size, id, icmp.Code()) return case header.ICMPv6ProtocolNumber: transName = "icmp" hdr, ok := vv.PullUp(header.ICMPv6MinimumSize) if !ok { break } icmp := header.ICMPv6(hdr) icmpType := "unknown" switch icmp.Type() { case header.ICMPv6DstUnreachable: icmpType = "destination unreachable" case header.ICMPv6PacketTooBig: icmpType = "packet too big" case header.ICMPv6TimeExceeded: icmpType = "time exceeded" case header.ICMPv6ParamProblem: icmpType = "param problem" case header.ICMPv6EchoRequest: icmpType = "echo request" case header.ICMPv6EchoReply: icmpType = "echo reply" case header.ICMPv6RouterSolicit: icmpType = "router solicit" case header.ICMPv6RouterAdvert: icmpType = "router advert" case header.ICMPv6NeighborSolicit: icmpType = "neighbor solicit" case header.ICMPv6NeighborAdvert: icmpType = "neighbor advert" case header.ICMPv6RedirectMsg: icmpType = "redirect message" } log.Infof("%s %s %v -> %v %s len:%d id:%04x code:%d", prefix, transName, src, dst, icmpType, size, id, icmp.Code()) return case header.UDPProtocolNumber: transName = "udp" hdr, ok := vv.PullUp(header.UDPMinimumSize) if !ok { break } udp := header.UDP(hdr) if fragmentOffset == 0 { srcPort = udp.SourcePort() dstPort = udp.DestinationPort() details = fmt.Sprintf("xsum: 0x%x", udp.Checksum()) size -= header.UDPMinimumSize } case header.TCPProtocolNumber: transName = "tcp" hdr, ok := vv.PullUp(header.TCPMinimumSize) if !ok { break } tcp := header.TCP(hdr) if fragmentOffset == 0 { offset := int(tcp.DataOffset()) if offset < header.TCPMinimumSize { details += fmt.Sprintf("invalid packet: tcp data offset too small %d", offset) break } if offset > vv.Size() && !moreFragments { details += fmt.Sprintf("invalid packet: tcp data offset %d larger than packet buffer length %d", offset, vv.Size()) break } srcPort = tcp.SourcePort() dstPort = tcp.DestinationPort() size -= uint16(offset) // Initialize the TCP flags. flags := tcp.Flags() flagsStr := []byte("FSRPAU") for i := range flagsStr { if flags&(1< %v unknown transport protocol: %d", prefix, src, dst, transProto) return } if gso != nil { details += fmt.Sprintf(" gso: %+v", gso) } log.Infof("%s %s %v:%v -> %v:%v len:%d id:%04x %s", prefix, transName, src, srcPort, dst, dstPort, size, id, details) }