// Copyright 2019 The gVisor Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // +build linux,amd64 linux,arm64 package fdbased import ( "encoding/binary" "syscall" "golang.org/x/sys/unix" "gvisor.dev/gvisor/pkg/tcpip" "gvisor.dev/gvisor/pkg/tcpip/buffer" "gvisor.dev/gvisor/pkg/tcpip/header" "gvisor.dev/gvisor/pkg/tcpip/link/rawfile" ) const ( tPacketAlignment = uintptr(16) tpStatusKernel = 0 tpStatusUser = 1 tpStatusCopy = 2 tpStatusLosing = 4 ) // We overallocate the frame size to accommodate space for the // TPacketHdr+RawSockAddrLinkLayer+MAC header and any padding. // // Memory allocated for the ring buffer: tpBlockSize * tpBlockNR = 2 MiB // // NOTE: // Frames need to be aligned at 16 byte boundaries. // BlockSize needs to be page aligned. // // For details see PACKET_MMAP setting constraints in // https://www.kernel.org/doc/Documentation/networking/packet_mmap.txt const ( tpFrameSize = 65536 + 128 tpBlockSize = tpFrameSize * 32 tpBlockNR = 1 tpFrameNR = (tpBlockSize * tpBlockNR) / tpFrameSize ) // tPacketAlign aligns the pointer v at a tPacketAlignment boundary. Direct // translation of the TPACKET_ALIGN macro in . func tPacketAlign(v uintptr) uintptr { return (v + tPacketAlignment - 1) & uintptr(^(tPacketAlignment - 1)) } // tPacketReq is the tpacket_req structure as described in // https://www.kernel.org/doc/Documentation/networking/packet_mmap.txt type tPacketReq struct { tpBlockSize uint32 tpBlockNR uint32 tpFrameSize uint32 tpFrameNR uint32 } // tPacketHdr is tpacket_hdr structure as described in type tPacketHdr []byte const ( tpStatusOffset = 0 tpLenOffset = 8 tpSnapLenOffset = 12 tpMacOffset = 16 tpNetOffset = 18 tpSecOffset = 20 tpUSecOffset = 24 ) func (t tPacketHdr) tpLen() uint32 { return binary.LittleEndian.Uint32(t[tpLenOffset:]) } func (t tPacketHdr) tpSnapLen() uint32 { return binary.LittleEndian.Uint32(t[tpSnapLenOffset:]) } func (t tPacketHdr) tpMac() uint16 { return binary.LittleEndian.Uint16(t[tpMacOffset:]) } func (t tPacketHdr) tpNet() uint16 { return binary.LittleEndian.Uint16(t[tpNetOffset:]) } func (t tPacketHdr) tpSec() uint32 { return binary.LittleEndian.Uint32(t[tpSecOffset:]) } func (t tPacketHdr) tpUSec() uint32 { return binary.LittleEndian.Uint32(t[tpUSecOffset:]) } func (t tPacketHdr) Payload() []byte { return t[uint32(t.tpMac()) : uint32(t.tpMac())+t.tpSnapLen()] } // packetMMapDispatcher uses PACKET_RX_RING's to read/dispatch inbound packets. // See: mmap_amd64_unsafe.go for implementation details. type packetMMapDispatcher struct { // fd is the file descriptor used to send and receive packets. fd int // e is the endpoint this dispatcher is attached to. e *endpoint // ringBuffer is only used when PacketMMap dispatcher is used and points // to the start of the mmapped PACKET_RX_RING buffer. ringBuffer []byte // ringOffset is the current offset into the ring buffer where the next // inbound packet will be placed by the kernel. ringOffset int } func (d *packetMMapDispatcher) readMMappedPacket() ([]byte, *tcpip.Error) { hdr := tPacketHdr(d.ringBuffer[d.ringOffset*tpFrameSize:]) for hdr.tpStatus()&tpStatusUser == 0 { event := rawfile.PollEvent{ FD: int32(d.fd), Events: unix.POLLIN | unix.POLLERR, } if _, errno := rawfile.BlockingPoll(&event, 1, nil); errno != 0 { if errno == syscall.EINTR { continue } return nil, rawfile.TranslateErrno(errno) } if hdr.tpStatus()&tpStatusCopy != 0 { // This frame is truncated so skip it after flipping the // buffer to the kernel. hdr.setTPStatus(tpStatusKernel) d.ringOffset = (d.ringOffset + 1) % tpFrameNR hdr = (tPacketHdr)(d.ringBuffer[d.ringOffset*tpFrameSize:]) continue } } // Copy out the packet from the mmapped frame to a locally owned buffer. pkt := make([]byte, hdr.tpSnapLen()) copy(pkt, hdr.Payload()) // Release packet to kernel. hdr.setTPStatus(tpStatusKernel) d.ringOffset = (d.ringOffset + 1) % tpFrameNR return pkt, nil } // dispatch reads packets from an mmaped ring buffer and dispatches them to the // network stack. func (d *packetMMapDispatcher) dispatch() (bool, *tcpip.Error) { pkt, err := d.readMMappedPacket() if err != nil { return false, err } var ( p tcpip.NetworkProtocolNumber remote, local tcpip.LinkAddress eth header.Ethernet ) if d.e.hdrSize > 0 { eth = header.Ethernet(pkt) p = eth.Type() remote = eth.SourceAddress() local = eth.DestinationAddress() } else { // We don't get any indication of what the packet is, so try to guess // if it's an IPv4 or IPv6 packet. switch header.IPVersion(pkt) { case header.IPv4Version: p = header.IPv4ProtocolNumber case header.IPv6Version: p = header.IPv6ProtocolNumber default: return true, nil } } pkt = pkt[d.e.hdrSize:] d.e.dispatcher.DeliverNetworkPacket(d.e, remote, local, p, tcpip.PacketBuffer{ Data: buffer.View(pkt).ToVectorisedView(), LinkHeader: buffer.View(eth), }) return true, nil }