// Copyright 2018 The gVisor Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Package channel provides the implemention of channel-based data-link layer // endpoints. Such endpoints allow injection of inbound packets and store // outbound packets in a channel. package channel import ( "context" "gvisor.dev/gvisor/pkg/sync" "gvisor.dev/gvisor/pkg/tcpip" "gvisor.dev/gvisor/pkg/tcpip/buffer" "gvisor.dev/gvisor/pkg/tcpip/stack" ) // PacketInfo holds all the information about an outbound packet. type PacketInfo struct { Pkt stack.PacketBuffer Proto tcpip.NetworkProtocolNumber GSO *stack.GSO Route stack.Route } // Notification is the interface for receiving notification from the packet // queue. type Notification interface { // WriteNotify will be called when a write happens to the queue. WriteNotify() } // NotificationHandle is an opaque handle to the registered notification target. // It can be used to unregister the notification when no longer interested. // // +stateify savable type NotificationHandle struct { n Notification } type queue struct { // mu protects fields below. mu sync.RWMutex // c is the outbound packet channel. Sending to c should hold mu. c chan PacketInfo numWrite int numRead int notify []*NotificationHandle } func (q *queue) Close() { close(q.c) } func (q *queue) Read() (PacketInfo, bool) { q.mu.Lock() defer q.mu.Unlock() select { case p := <-q.c: q.numRead++ return p, true default: return PacketInfo{}, false } } func (q *queue) ReadContext(ctx context.Context) (PacketInfo, bool) { // We have to receive from channel without holding the lock, since it can // block indefinitely. This will cause a window that numWrite - numRead // produces a larger number, but won't go to negative. numWrite >= numRead // still holds. select { case pkt := <-q.c: q.mu.Lock() defer q.mu.Unlock() q.numRead++ return pkt, true case <-ctx.Done(): return PacketInfo{}, false } } func (q *queue) Write(p PacketInfo) bool { wrote := false // It's important to make sure nobody can see numWrite until we increment it, // so numWrite >= numRead holds. q.mu.Lock() select { case q.c <- p: wrote = true q.numWrite++ default: } notify := q.notify q.mu.Unlock() if wrote { // Send notification outside of lock. for _, h := range notify { h.n.WriteNotify() } } return wrote } func (q *queue) Num() int { q.mu.RLock() defer q.mu.RUnlock() n := q.numWrite - q.numRead if n < 0 { panic("numWrite < numRead") } return n } func (q *queue) AddNotify(notify Notification) *NotificationHandle { q.mu.Lock() defer q.mu.Unlock() h := &NotificationHandle{n: notify} q.notify = append(q.notify, h) return h } func (q *queue) RemoveNotify(handle *NotificationHandle) { q.mu.Lock() defer q.mu.Unlock() // Make a copy, since we reads the array outside of lock when notifying. notify := make([]*NotificationHandle, 0, len(q.notify)) for _, h := range q.notify { if h != handle { notify = append(notify, h) } } q.notify = notify } // Endpoint is link layer endpoint that stores outbound packets in a channel // and allows injection of inbound packets. type Endpoint struct { dispatcher stack.NetworkDispatcher mtu uint32 linkAddr tcpip.LinkAddress LinkEPCapabilities stack.LinkEndpointCapabilities // Outbound packet queue. q *queue } // New creates a new channel endpoint. func New(size int, mtu uint32, linkAddr tcpip.LinkAddress) *Endpoint { return &Endpoint{ q: &queue{ c: make(chan PacketInfo, size), }, mtu: mtu, linkAddr: linkAddr, } } // Close closes e. Further packet injections will panic. Reads continue to // succeed until all packets are read. func (e *Endpoint) Close() { e.q.Close() } // Read does non-blocking read one packet from the outbound packet queue. func (e *Endpoint) Read() (PacketInfo, bool) { return e.q.Read() } // ReadContext does blocking read for one packet from the outbound packet queue. // It can be cancelled by ctx, and in this case, it returns false. func (e *Endpoint) ReadContext(ctx context.Context) (PacketInfo, bool) { return e.q.ReadContext(ctx) } // Drain removes all outbound packets from the channel and counts them. func (e *Endpoint) Drain() int { c := 0 for { if _, ok := e.Read(); !ok { return c } c++ } } // NumQueued returns the number of packet queued for outbound. func (e *Endpoint) NumQueued() int { return e.q.Num() } // InjectInbound injects an inbound packet. func (e *Endpoint) InjectInbound(protocol tcpip.NetworkProtocolNumber, pkt stack.PacketBuffer) { e.InjectLinkAddr(protocol, "", pkt) } // InjectLinkAddr injects an inbound packet with a remote link address. func (e *Endpoint) InjectLinkAddr(protocol tcpip.NetworkProtocolNumber, remote tcpip.LinkAddress, pkt stack.PacketBuffer) { e.dispatcher.DeliverNetworkPacket(e, remote, "" /* local */, protocol, pkt) } // Attach saves the stack network-layer dispatcher for use later when packets // are injected. func (e *Endpoint) Attach(dispatcher stack.NetworkDispatcher) { e.dispatcher = dispatcher } // IsAttached implements stack.LinkEndpoint.IsAttached. func (e *Endpoint) IsAttached() bool { return e.dispatcher != nil } // MTU implements stack.LinkEndpoint.MTU. It returns the value initialized // during construction. func (e *Endpoint) MTU() uint32 { return e.mtu } // Capabilities implements stack.LinkEndpoint.Capabilities. func (e *Endpoint) Capabilities() stack.LinkEndpointCapabilities { return e.LinkEPCapabilities } // GSOMaxSize returns the maximum GSO packet size. func (*Endpoint) GSOMaxSize() uint32 { return 1 << 15 } // MaxHeaderLength returns the maximum size of the link layer header. Given it // doesn't have a header, it just returns 0. func (*Endpoint) MaxHeaderLength() uint16 { return 0 } // LinkAddress returns the link address of this endpoint. func (e *Endpoint) LinkAddress() tcpip.LinkAddress { return e.linkAddr } // WritePacket stores outbound packets into the channel. func (e *Endpoint) WritePacket(r *stack.Route, gso *stack.GSO, protocol tcpip.NetworkProtocolNumber, pkt stack.PacketBuffer) *tcpip.Error { // Clone r then release its resource so we only get the relevant fields from // stack.Route without holding a reference to a NIC's endpoint. route := r.Clone() route.Release() p := PacketInfo{ Pkt: pkt, Proto: protocol, GSO: gso, Route: route, } e.q.Write(p) return nil } // WritePackets stores outbound packets into the channel. func (e *Endpoint) WritePackets(r *stack.Route, gso *stack.GSO, pkts []stack.PacketBuffer, protocol tcpip.NetworkProtocolNumber) (int, *tcpip.Error) { // Clone r then release its resource so we only get the relevant fields from // stack.Route without holding a reference to a NIC's endpoint. route := r.Clone() route.Release() payloadView := pkts[0].Data.ToView() n := 0 for _, pkt := range pkts { off := pkt.DataOffset size := pkt.DataSize p := PacketInfo{ Pkt: stack.PacketBuffer{ Header: pkt.Header, Data: buffer.NewViewFromBytes(payloadView[off : off+size]).ToVectorisedView(), }, Proto: protocol, GSO: gso, Route: route, } if !e.q.Write(p) { break } n++ } return n, nil } // WriteRawPacket implements stack.LinkEndpoint.WriteRawPacket. func (e *Endpoint) WriteRawPacket(vv buffer.VectorisedView) *tcpip.Error { p := PacketInfo{ Pkt: stack.PacketBuffer{Data: vv}, Proto: 0, GSO: nil, } e.q.Write(p) return nil } // Wait implements stack.LinkEndpoint.Wait. func (*Endpoint) Wait() {} // AddNotify adds a notification target for receiving event about outgoing // packets. func (e *Endpoint) AddNotify(notify Notification) *NotificationHandle { return e.q.AddNotify(notify) } // RemoveNotify removes handle from the list of notification targets. func (e *Endpoint) RemoveNotify(handle *NotificationHandle) { e.q.RemoveNotify(handle) }