// Copyright 2018 The gVisor Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package linux import ( "fmt" "time" "gvisor.dev/gvisor/pkg/abi/linux" "gvisor.dev/gvisor/pkg/errors/linuxerr" "gvisor.dev/gvisor/pkg/hostarch" "gvisor.dev/gvisor/pkg/marshal/primitive" "gvisor.dev/gvisor/pkg/sentry/arch" "gvisor.dev/gvisor/pkg/sentry/kernel" ktime "gvisor.dev/gvisor/pkg/sentry/kernel/time" "gvisor.dev/gvisor/pkg/syserror" ) // The most significant 29 bits hold either a pid or a file descriptor. func pidOfClockID(c int32) kernel.ThreadID { return kernel.ThreadID(^(c >> 3)) } // whichCPUClock returns one of CPUCLOCK_PERF, CPUCLOCK_VIRT, CPUCLOCK_SCHED or // CLOCK_FD. func whichCPUClock(c int32) int32 { return c & linux.CPUCLOCK_CLOCK_MASK } // isCPUClockPerThread returns true if the CPUCLOCK_PERTHREAD bit is set in the // clock id. func isCPUClockPerThread(c int32) bool { return c&linux.CPUCLOCK_PERTHREAD_MASK != 0 } // isValidCPUClock returns checks that the cpu clock id is valid. func isValidCPUClock(c int32) bool { // Bits 0, 1, and 2 cannot all be set. if c&7 == 7 { return false } if whichCPUClock(c) >= linux.CPUCLOCK_MAX { return false } return true } // targetTask returns the kernel.Task for the given clock id. func targetTask(t *kernel.Task, c int32) *kernel.Task { pid := pidOfClockID(c) if pid == 0 { return t } return t.PIDNamespace().TaskWithID(pid) } // ClockGetres implements linux syscall clock_getres(2). func ClockGetres(t *kernel.Task, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) { clockID := int32(args[0].Int()) addr := args[1].Pointer() r := linux.Timespec{ Sec: 0, Nsec: 1, } if _, err := getClock(t, clockID); err != nil { return 0, nil, syserror.EINVAL } if addr == 0 { // Don't need to copy out. return 0, nil, nil } return 0, nil, copyTimespecOut(t, addr, &r) } type cpuClocker interface { UserCPUClock() ktime.Clock CPUClock() ktime.Clock } func getClock(t *kernel.Task, clockID int32) (ktime.Clock, error) { if clockID < 0 { if !isValidCPUClock(clockID) { return nil, syserror.EINVAL } targetTask := targetTask(t, clockID) if targetTask == nil { return nil, syserror.EINVAL } var target cpuClocker if isCPUClockPerThread(clockID) { target = targetTask } else { target = targetTask.ThreadGroup() } switch whichCPUClock(clockID) { case linux.CPUCLOCK_VIRT: return target.UserCPUClock(), nil case linux.CPUCLOCK_PROF, linux.CPUCLOCK_SCHED: // CPUCLOCK_SCHED is approximated by CPUCLOCK_PROF. return target.CPUClock(), nil default: return nil, syserror.EINVAL } } switch clockID { case linux.CLOCK_REALTIME, linux.CLOCK_REALTIME_COARSE: return t.Kernel().RealtimeClock(), nil case linux.CLOCK_MONOTONIC, linux.CLOCK_MONOTONIC_COARSE, linux.CLOCK_MONOTONIC_RAW, linux.CLOCK_BOOTTIME: // CLOCK_MONOTONIC approximates CLOCK_MONOTONIC_RAW. // CLOCK_BOOTTIME is internally mapped to CLOCK_MONOTONIC, as: // - CLOCK_BOOTTIME should behave as CLOCK_MONOTONIC while also // including suspend time. // - gVisor has no concept of suspend/resume. // - CLOCK_MONOTONIC already includes save/restore time, which is // the closest to suspend time. return t.Kernel().MonotonicClock(), nil case linux.CLOCK_PROCESS_CPUTIME_ID: return t.ThreadGroup().CPUClock(), nil case linux.CLOCK_THREAD_CPUTIME_ID: return t.CPUClock(), nil default: return nil, syserror.EINVAL } } // ClockGettime implements linux syscall clock_gettime(2). func ClockGettime(t *kernel.Task, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) { clockID := int32(args[0].Int()) addr := args[1].Pointer() c, err := getClock(t, clockID) if err != nil { return 0, nil, err } ts := c.Now().Timespec() return 0, nil, copyTimespecOut(t, addr, &ts) } // ClockSettime implements linux syscall clock_settime(2). func ClockSettime(*kernel.Task, arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) { return 0, nil, syserror.EPERM } // Time implements linux syscall time(2). func Time(t *kernel.Task, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) { addr := args[0].Pointer() r := t.Kernel().RealtimeClock().Now().TimeT() if addr == hostarch.Addr(0) { return uintptr(r), nil, nil } if _, err := r.CopyOut(t, addr); err != nil { return 0, nil, err } return uintptr(r), nil, nil } // clockNanosleepRestartBlock encapsulates the state required to restart // clock_nanosleep(2) via restart_syscall(2). // // +stateify savable type clockNanosleepRestartBlock struct { c ktime.Clock end ktime.Time rem hostarch.Addr } // Restart implements kernel.SyscallRestartBlock.Restart. func (n *clockNanosleepRestartBlock) Restart(t *kernel.Task) (uintptr, error) { return 0, clockNanosleepUntil(t, n.c, n.end, n.rem, true) } // clockNanosleepUntil blocks until a specified time. // // If blocking is interrupted, the syscall is restarted with the original // arguments. func clockNanosleepUntil(t *kernel.Task, c ktime.Clock, end ktime.Time, rem hostarch.Addr, needRestartBlock bool) error { notifier, tchan := ktime.NewChannelNotifier() timer := ktime.NewTimer(c, notifier) // Turn on the timer. timer.Swap(ktime.Setting{ Period: 0, Enabled: true, Next: end, }) err := t.BlockWithTimer(nil, tchan) timer.Destroy() switch { case linuxerr.Equals(linuxerr.ETIMEDOUT, err): // Slept for entire timeout. return nil case err == syserror.ErrInterrupted: // Interrupted. remaining := end.Sub(c.Now()) if remaining <= 0 { return nil } // Copy out remaining time. if rem != 0 { timeleft := linux.NsecToTimespec(remaining.Nanoseconds()) if err := copyTimespecOut(t, rem, &timeleft); err != nil { return err } } if needRestartBlock { // Arrange for a restart with the remaining duration. t.SetSyscallRestartBlock(&clockNanosleepRestartBlock{ c: c, end: end, rem: rem, }) return syserror.ERESTART_RESTARTBLOCK } return syserror.ERESTARTNOHAND default: panic(fmt.Sprintf("Impossible BlockWithTimer error %v", err)) } } // Nanosleep implements linux syscall Nanosleep(2). func Nanosleep(t *kernel.Task, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) { addr := args[0].Pointer() rem := args[1].Pointer() ts, err := copyTimespecIn(t, addr) if err != nil { return 0, nil, err } if !ts.Valid() { return 0, nil, syserror.EINVAL } // Just like linux, we cap the timeout with the max number that int64 can // represent which is roughly 292 years. dur := time.Duration(ts.ToNsecCapped()) * time.Nanosecond c := t.Kernel().MonotonicClock() return 0, nil, clockNanosleepUntil(t, c, c.Now().Add(dur), rem, true) } // ClockNanosleep implements linux syscall clock_nanosleep(2). func ClockNanosleep(t *kernel.Task, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) { clockID := int32(args[0].Int()) flags := args[1].Int() addr := args[2].Pointer() rem := args[3].Pointer() req, err := copyTimespecIn(t, addr) if err != nil { return 0, nil, err } if !req.Valid() { return 0, nil, syserror.EINVAL } // Only allow clock constants also allowed by Linux. if clockID > 0 { if clockID != linux.CLOCK_REALTIME && clockID != linux.CLOCK_MONOTONIC && clockID != linux.CLOCK_PROCESS_CPUTIME_ID { return 0, nil, syserror.EINVAL } } c, err := getClock(t, clockID) if err != nil { return 0, nil, err } if flags&linux.TIMER_ABSTIME != 0 { return 0, nil, clockNanosleepUntil(t, c, ktime.FromTimespec(req), 0, false) } dur := time.Duration(req.ToNsecCapped()) * time.Nanosecond return 0, nil, clockNanosleepUntil(t, c, c.Now().Add(dur), rem, true) } // Gettimeofday implements linux syscall gettimeofday(2). func Gettimeofday(t *kernel.Task, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) { tv := args[0].Pointer() tz := args[1].Pointer() if tv != hostarch.Addr(0) { nowTv := t.Kernel().RealtimeClock().Now().Timeval() if err := copyTimevalOut(t, tv, &nowTv); err != nil { return 0, nil, err } } if tz != hostarch.Addr(0) { // Ask the time package for the timezone. _, offset := time.Now().Zone() // This int32 array mimics linux's struct timezone. timezone := []int32{-int32(offset) / 60, 0} _, err := primitive.CopyInt32SliceOut(t, tz, timezone) return 0, nil, err } return 0, nil, nil }