// Copyright 2018 The gVisor Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package kvm import ( "sync" "sync/atomic" "gvisor.dev/gvisor/pkg/atomicbitops" "gvisor.dev/gvisor/pkg/sentry/platform" "gvisor.dev/gvisor/pkg/sentry/platform/ring0/pagetables" "gvisor.dev/gvisor/pkg/sentry/usermem" ) // dirtySet tracks vCPUs for invalidation. type dirtySet struct { vCPUs []uint64 } // forEach iterates over all CPUs in the dirty set. func (ds *dirtySet) forEach(m *machine, fn func(c *vCPU)) { m.mu.RLock() defer m.mu.RUnlock() for index := range ds.vCPUs { mask := atomic.SwapUint64(&ds.vCPUs[index], 0) if mask != 0 { for bit := 0; bit < 64; bit++ { if mask&(1<<uint64(bit)) == 0 { continue } id := 64*index + bit fn(m.vCPUsByID[id]) } } } } // mark marks the given vCPU as dirty and returns whether it was previously // clean. Being previously clean implies that a flush is needed on entry. func (ds *dirtySet) mark(c *vCPU) bool { index := uint64(c.id) / 64 bit := uint64(1) << uint(c.id%64) oldValue := atomic.LoadUint64(&ds.vCPUs[index]) if oldValue&bit != 0 { return false // Not clean. } // Set the bit unilaterally, and ensure that a flush takes place. Note // that it's possible for races to occur here, but since the flush is // taking place long after these lines there's no race in practice. atomicbitops.OrUint64(&ds.vCPUs[index], bit) return true // Previously clean. } // addressSpace is a wrapper for PageTables. type addressSpace struct { platform.NoAddressSpaceIO // mu is the lock for modifications to the address space. // // Note that the page tables themselves are not locked. mu sync.Mutex // machine is the underlying machine. machine *machine // pageTables are for this particular address space. pageTables *pagetables.PageTables // dirtySet is the set of dirty vCPUs. dirtySet *dirtySet } // invalidate is the implementation for Invalidate. func (as *addressSpace) invalidate() { as.dirtySet.forEach(as.machine, func(c *vCPU) { if c.active.get() == as { // If this happens to be active, c.BounceToKernel() // ... force a kernel transition. } }) } // Invalidate interrupts all dirty contexts. func (as *addressSpace) Invalidate() { as.mu.Lock() defer as.mu.Unlock() as.invalidate() } // Touch adds the given vCPU to the dirty list. // // The return value indicates whether a flush is required. func (as *addressSpace) Touch(c *vCPU) bool { return as.dirtySet.mark(c) } type hostMapEntry struct { addr uintptr length uintptr } func (as *addressSpace) mapHost(addr usermem.Addr, m hostMapEntry, at usermem.AccessType) (inv bool) { for m.length > 0 { physical, length, ok := translateToPhysical(m.addr) if !ok { panic("unable to translate segment") } if length > m.length { length = m.length } // Ensure that this map has physical mappings. If the page does // not have physical mappings, the KVM module may inject // spurious exceptions when emulation fails (i.e. it tries to // emulate because the RIP is pointed at those pages). as.machine.mapPhysical(physical, length) // Install the page table mappings. Note that the ordering is // important; if the pagetable mappings were installed before // ensuring the physical pages were available, then some other // thread could theoretically access them. // // Due to the way KVM's shadow paging implementation works, // modifications to the page tables while in host mode may not // be trapped, leading to the shadow pages being out of sync. // Therefore, we need to ensure that we are in guest mode for // page table modifications. See the call to bluepill, below. as.machine.retryInGuest(func() { inv = as.pageTables.Map(addr, length, pagetables.MapOpts{ AccessType: at, User: true, }, physical) || inv }) m.addr += length m.length -= length addr += usermem.Addr(length) } return inv } // MapFile implements platform.AddressSpace.MapFile. func (as *addressSpace) MapFile(addr usermem.Addr, f platform.File, fr platform.FileRange, at usermem.AccessType, precommit bool) error { as.mu.Lock() defer as.mu.Unlock() // Get mappings in the sentry's address space, which are guaranteed to be // valid as long as a reference is held on the mapped pages (which is in // turn required by AddressSpace.MapFile precondition). // // If precommit is true, we will touch mappings to commit them, so ensure // that mappings are readable from sentry context. // // We don't execute from application file-mapped memory, and guest page // tables don't care if we have execute permission (but they do need pages // to be readable). bs, err := f.MapInternal(fr, usermem.AccessType{ Read: at.Read || at.Execute || precommit, Write: at.Write, }) if err != nil { return err } // Map the mappings in the sentry's address space (guest physical memory) // into the application's address space (guest virtual memory). inv := false for !bs.IsEmpty() { b := bs.Head() bs = bs.Tail() // Since fr was page-aligned, b should also be page-aligned. We do the // lookup in our host page tables for this translation. if precommit { s := b.ToSlice() for i := 0; i < len(s); i += usermem.PageSize { _ = s[i] // Touch to commit. } } prev := as.mapHost(addr, hostMapEntry{ addr: b.Addr(), length: uintptr(b.Len()), }, at) inv = inv || prev addr += usermem.Addr(b.Len()) } if inv { as.invalidate() } return nil } // Unmap unmaps the given range by calling pagetables.PageTables.Unmap. func (as *addressSpace) Unmap(addr usermem.Addr, length uint64) { as.mu.Lock() defer as.mu.Unlock() // See above re: retryInGuest. var prev bool as.machine.retryInGuest(func() { prev = as.pageTables.Unmap(addr, uintptr(length)) || prev }) if prev { as.invalidate() // Recycle any freed intermediate pages. as.pageTables.Allocator.Recycle() } } // Release releases the page tables. func (as *addressSpace) Release() { as.Unmap(0, ^uint64(0)) // Free all pages from the allocator. as.pageTables.Allocator.(allocator).base.Drain() // Drop all cached machine references. as.machine.dropPageTables(as.pageTables) }