package pgalloc import ( __generics_imported0 "gvisor.dev/gvisor/pkg/sentry/memmap" ) import ( "bytes" "fmt" ) // trackGaps is an optional parameter. // // If trackGaps is 1, the Set will track maximum gap size recursively, // enabling the GapIterator.{Prev,Next}LargeEnoughGap functions. In this // case, Key must be an unsigned integer. // // trackGaps must be 0 or 1. const usagetrackGaps = 1 var _ = uint8(usagetrackGaps << 7) // Will fail if not zero or one. // dynamicGap is a type that disappears if trackGaps is 0. type usagedynamicGap [usagetrackGaps]uint64 // Get returns the value of the gap. // // Precondition: trackGaps must be non-zero. func (d *usagedynamicGap) Get() uint64 { return d[:][0] } // Set sets the value of the gap. // // Precondition: trackGaps must be non-zero. func (d *usagedynamicGap) Set(v uint64) { d[:][0] = v } const ( // minDegree is the minimum degree of an internal node in a Set B-tree. // // - Any non-root node has at least minDegree-1 segments. // // - Any non-root internal (non-leaf) node has at least minDegree children. // // - The root node may have fewer than minDegree-1 segments, but it may // only have 0 segments if the tree is empty. // // Our implementation requires minDegree >= 3. Higher values of minDegree // usually improve performance, but increase memory usage for small sets. usageminDegree = 10 usagemaxDegree = 2 * usageminDegree ) // A Set is a mapping of segments with non-overlapping Range keys. The zero // value for a Set is an empty set. Set values are not safely movable nor // copyable. Set is thread-compatible. // // +stateify savable type usageSet struct { root usagenode `state:".(*usageSegmentDataSlices)"` } // IsEmpty returns true if the set contains no segments. func (s *usageSet) IsEmpty() bool { return s.root.nrSegments == 0 } // IsEmptyRange returns true iff no segments in the set overlap the given // range. This is semantically equivalent to s.SpanRange(r) == 0, but may be // more efficient. func (s *usageSet) IsEmptyRange(r __generics_imported0.FileRange) bool { switch { case r.Length() < 0: panic(fmt.Sprintf("invalid range %v", r)) case r.Length() == 0: return true } _, gap := s.Find(r.Start) if !gap.Ok() { return false } return r.End <= gap.End() } // Span returns the total size of all segments in the set. func (s *usageSet) Span() uint64 { var sz uint64 for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() { sz += seg.Range().Length() } return sz } // SpanRange returns the total size of the intersection of segments in the set // with the given range. func (s *usageSet) SpanRange(r __generics_imported0.FileRange) uint64 { switch { case r.Length() < 0: panic(fmt.Sprintf("invalid range %v", r)) case r.Length() == 0: return 0 } var sz uint64 for seg := s.LowerBoundSegment(r.Start); seg.Ok() && seg.Start() < r.End; seg = seg.NextSegment() { sz += seg.Range().Intersect(r).Length() } return sz } // FirstSegment returns the first segment in the set. If the set is empty, // FirstSegment returns a terminal iterator. func (s *usageSet) FirstSegment() usageIterator { if s.root.nrSegments == 0 { return usageIterator{} } return s.root.firstSegment() } // LastSegment returns the last segment in the set. If the set is empty, // LastSegment returns a terminal iterator. func (s *usageSet) LastSegment() usageIterator { if s.root.nrSegments == 0 { return usageIterator{} } return s.root.lastSegment() } // FirstGap returns the first gap in the set. func (s *usageSet) FirstGap() usageGapIterator { n := &s.root for n.hasChildren { n = n.children[0] } return usageGapIterator{n, 0} } // LastGap returns the last gap in the set. func (s *usageSet) LastGap() usageGapIterator { n := &s.root for n.hasChildren { n = n.children[n.nrSegments] } return usageGapIterator{n, n.nrSegments} } // Find returns the segment or gap whose range contains the given key. If a // segment is found, the returned Iterator is non-terminal and the // returned GapIterator is terminal. Otherwise, the returned Iterator is // terminal and the returned GapIterator is non-terminal. func (s *usageSet) Find(key uint64) (usageIterator, usageGapIterator) { n := &s.root for { lower := 0 upper := n.nrSegments for lower < upper { i := lower + (upper-lower)/2 if r := n.keys[i]; key < r.End { if key >= r.Start { return usageIterator{n, i}, usageGapIterator{} } upper = i } else { lower = i + 1 } } i := lower if !n.hasChildren { return usageIterator{}, usageGapIterator{n, i} } n = n.children[i] } } // FindSegment returns the segment whose range contains the given key. If no // such segment exists, FindSegment returns a terminal iterator. func (s *usageSet) FindSegment(key uint64) usageIterator { seg, _ := s.Find(key) return seg } // LowerBoundSegment returns the segment with the lowest range that contains a // key greater than or equal to min. If no such segment exists, // LowerBoundSegment returns a terminal iterator. func (s *usageSet) LowerBoundSegment(min uint64) usageIterator { seg, gap := s.Find(min) if seg.Ok() { return seg } return gap.NextSegment() } // UpperBoundSegment returns the segment with the highest range that contains a // key less than or equal to max. If no such segment exists, UpperBoundSegment // returns a terminal iterator. func (s *usageSet) UpperBoundSegment(max uint64) usageIterator { seg, gap := s.Find(max) if seg.Ok() { return seg } return gap.PrevSegment() } // FindGap returns the gap containing the given key. If no such gap exists // (i.e. the set contains a segment containing that key), FindGap returns a // terminal iterator. func (s *usageSet) FindGap(key uint64) usageGapIterator { _, gap := s.Find(key) return gap } // LowerBoundGap returns the gap with the lowest range that is greater than or // equal to min. func (s *usageSet) LowerBoundGap(min uint64) usageGapIterator { seg, gap := s.Find(min) if gap.Ok() { return gap } return seg.NextGap() } // UpperBoundGap returns the gap with the highest range that is less than or // equal to max. func (s *usageSet) UpperBoundGap(max uint64) usageGapIterator { seg, gap := s.Find(max) if gap.Ok() { return gap } return seg.PrevGap() } // Add inserts the given segment into the set and returns true. If the new // segment can be merged with adjacent segments, Add will do so. If the new // segment would overlap an existing segment, Add returns false. If Add // succeeds, all existing iterators are invalidated. func (s *usageSet) Add(r __generics_imported0.FileRange, val usageInfo) bool { if r.Length() <= 0 { panic(fmt.Sprintf("invalid segment range %v", r)) } gap := s.FindGap(r.Start) if !gap.Ok() { return false } if r.End > gap.End() { return false } s.Insert(gap, r, val) return true } // AddWithoutMerging inserts the given segment into the set and returns true. // If it would overlap an existing segment, AddWithoutMerging does nothing and // returns false. If AddWithoutMerging succeeds, all existing iterators are // invalidated. func (s *usageSet) AddWithoutMerging(r __generics_imported0.FileRange, val usageInfo) bool { if r.Length() <= 0 { panic(fmt.Sprintf("invalid segment range %v", r)) } gap := s.FindGap(r.Start) if !gap.Ok() { return false } if r.End > gap.End() { return false } s.InsertWithoutMergingUnchecked(gap, r, val) return true } // Insert inserts the given segment into the given gap. If the new segment can // be merged with adjacent segments, Insert will do so. Insert returns an // iterator to the segment containing the inserted value (which may have been // merged with other values). All existing iterators (including gap, but not // including the returned iterator) are invalidated. // // If the gap cannot accommodate the segment, or if r is invalid, Insert panics. // // Insert is semantically equivalent to a InsertWithoutMerging followed by a // Merge, but may be more efficient. Note that there is no unchecked variant of // Insert since Insert must retrieve and inspect gap's predecessor and // successor segments regardless. func (s *usageSet) Insert(gap usageGapIterator, r __generics_imported0.FileRange, val usageInfo) usageIterator { if r.Length() <= 0 { panic(fmt.Sprintf("invalid segment range %v", r)) } prev, next := gap.PrevSegment(), gap.NextSegment() if prev.Ok() && prev.End() > r.Start { panic(fmt.Sprintf("new segment %v overlaps predecessor %v", r, prev.Range())) } if next.Ok() && next.Start() < r.End { panic(fmt.Sprintf("new segment %v overlaps successor %v", r, next.Range())) } if prev.Ok() && prev.End() == r.Start { if mval, ok := (usageSetFunctions{}).Merge(prev.Range(), prev.Value(), r, val); ok { shrinkMaxGap := usagetrackGaps != 0 && gap.Range().Length() == gap.node.maxGap.Get() prev.SetEndUnchecked(r.End) prev.SetValue(mval) if shrinkMaxGap { gap.node.updateMaxGapLeaf() } if next.Ok() && next.Start() == r.End { val = mval if mval, ok := (usageSetFunctions{}).Merge(prev.Range(), val, next.Range(), next.Value()); ok { prev.SetEndUnchecked(next.End()) prev.SetValue(mval) return s.Remove(next).PrevSegment() } } return prev } } if next.Ok() && next.Start() == r.End { if mval, ok := (usageSetFunctions{}).Merge(r, val, next.Range(), next.Value()); ok { shrinkMaxGap := usagetrackGaps != 0 && gap.Range().Length() == gap.node.maxGap.Get() next.SetStartUnchecked(r.Start) next.SetValue(mval) if shrinkMaxGap { gap.node.updateMaxGapLeaf() } return next } } return s.InsertWithoutMergingUnchecked(gap, r, val) } // InsertWithoutMerging inserts the given segment into the given gap and // returns an iterator to the inserted segment. All existing iterators // (including gap, but not including the returned iterator) are invalidated. // // If the gap cannot accommodate the segment, or if r is invalid, // InsertWithoutMerging panics. func (s *usageSet) InsertWithoutMerging(gap usageGapIterator, r __generics_imported0.FileRange, val usageInfo) usageIterator { if r.Length() <= 0 { panic(fmt.Sprintf("invalid segment range %v", r)) } if gr := gap.Range(); !gr.IsSupersetOf(r) { panic(fmt.Sprintf("cannot insert segment range %v into gap range %v", r, gr)) } return s.InsertWithoutMergingUnchecked(gap, r, val) } // InsertWithoutMergingUnchecked inserts the given segment into the given gap // and returns an iterator to the inserted segment. All existing iterators // (including gap, but not including the returned iterator) are invalidated. // // Preconditions: // * r.Start >= gap.Start(). // * r.End <= gap.End(). func (s *usageSet) InsertWithoutMergingUnchecked(gap usageGapIterator, r __generics_imported0.FileRange, val usageInfo) usageIterator { gap = gap.node.rebalanceBeforeInsert(gap) splitMaxGap := usagetrackGaps != 0 && (gap.node.nrSegments == 0 || gap.Range().Length() == gap.node.maxGap.Get()) copy(gap.node.keys[gap.index+1:], gap.node.keys[gap.index:gap.node.nrSegments]) copy(gap.node.values[gap.index+1:], gap.node.values[gap.index:gap.node.nrSegments]) gap.node.keys[gap.index] = r gap.node.values[gap.index] = val gap.node.nrSegments++ if splitMaxGap { gap.node.updateMaxGapLeaf() } return usageIterator{gap.node, gap.index} } // Remove removes the given segment and returns an iterator to the vacated gap. // All existing iterators (including seg, but not including the returned // iterator) are invalidated. func (s *usageSet) Remove(seg usageIterator) usageGapIterator { if seg.node.hasChildren { victim := seg.PrevSegment() seg.SetRangeUnchecked(victim.Range()) seg.SetValue(victim.Value()) nextAdjacentNode := seg.NextSegment().node if usagetrackGaps != 0 { nextAdjacentNode.updateMaxGapLeaf() } return s.Remove(victim).NextGap() } copy(seg.node.keys[seg.index:], seg.node.keys[seg.index+1:seg.node.nrSegments]) copy(seg.node.values[seg.index:], seg.node.values[seg.index+1:seg.node.nrSegments]) usageSetFunctions{}.ClearValue(&seg.node.values[seg.node.nrSegments-1]) seg.node.nrSegments-- if usagetrackGaps != 0 { seg.node.updateMaxGapLeaf() } return seg.node.rebalanceAfterRemove(usageGapIterator{seg.node, seg.index}) } // RemoveAll removes all segments from the set. All existing iterators are // invalidated. func (s *usageSet) RemoveAll() { s.root = usagenode{} } // RemoveRange removes all segments in the given range. An iterator to the // newly formed gap is returned, and all existing iterators are invalidated. func (s *usageSet) RemoveRange(r __generics_imported0.FileRange) usageGapIterator { seg, gap := s.Find(r.Start) if seg.Ok() { seg = s.Isolate(seg, r) gap = s.Remove(seg) } for seg = gap.NextSegment(); seg.Ok() && seg.Start() < r.End; seg = gap.NextSegment() { seg = s.Isolate(seg, r) gap = s.Remove(seg) } return gap } // Merge attempts to merge two neighboring segments. If successful, Merge // returns an iterator to the merged segment, and all existing iterators are // invalidated. Otherwise, Merge returns a terminal iterator. // // If first is not the predecessor of second, Merge panics. func (s *usageSet) Merge(first, second usageIterator) usageIterator { if first.NextSegment() != second { panic(fmt.Sprintf("attempt to merge non-neighboring segments %v, %v", first.Range(), second.Range())) } return s.MergeUnchecked(first, second) } // MergeUnchecked attempts to merge two neighboring segments. If successful, // MergeUnchecked returns an iterator to the merged segment, and all existing // iterators are invalidated. Otherwise, MergeUnchecked returns a terminal // iterator. // // Precondition: first is the predecessor of second: first.NextSegment() == // second, first == second.PrevSegment(). func (s *usageSet) MergeUnchecked(first, second usageIterator) usageIterator { if first.End() == second.Start() { if mval, ok := (usageSetFunctions{}).Merge(first.Range(), first.Value(), second.Range(), second.Value()); ok { first.SetEndUnchecked(second.End()) first.SetValue(mval) return s.Remove(second).PrevSegment() } } return usageIterator{} } // MergeAll attempts to merge all adjacent segments in the set. All existing // iterators are invalidated. func (s *usageSet) MergeAll() { seg := s.FirstSegment() if !seg.Ok() { return } next := seg.NextSegment() for next.Ok() { if mseg := s.MergeUnchecked(seg, next); mseg.Ok() { seg, next = mseg, mseg.NextSegment() } else { seg, next = next, next.NextSegment() } } } // MergeRange attempts to merge all adjacent segments that contain a key in the // specific range. All existing iterators are invalidated. func (s *usageSet) MergeRange(r __generics_imported0.FileRange) { seg := s.LowerBoundSegment(r.Start) if !seg.Ok() { return } next := seg.NextSegment() for next.Ok() && next.Range().Start < r.End { if mseg := s.MergeUnchecked(seg, next); mseg.Ok() { seg, next = mseg, mseg.NextSegment() } else { seg, next = next, next.NextSegment() } } } // MergeAdjacent attempts to merge the segment containing r.Start with its // predecessor, and the segment containing r.End-1 with its successor. func (s *usageSet) MergeAdjacent(r __generics_imported0.FileRange) { first := s.FindSegment(r.Start) if first.Ok() { if prev := first.PrevSegment(); prev.Ok() { s.Merge(prev, first) } } last := s.FindSegment(r.End - 1) if last.Ok() { if next := last.NextSegment(); next.Ok() { s.Merge(last, next) } } } // Split splits the given segment at the given key and returns iterators to the // two resulting segments. All existing iterators (including seg, but not // including the returned iterators) are invalidated. // // If the segment cannot be split at split (because split is at the start or // end of the segment's range, so splitting would produce a segment with zero // length, or because split falls outside the segment's range altogether), // Split panics. func (s *usageSet) Split(seg usageIterator, split uint64) (usageIterator, usageIterator) { if !seg.Range().CanSplitAt(split) { panic(fmt.Sprintf("can't split %v at %v", seg.Range(), split)) } return s.SplitUnchecked(seg, split) } // SplitUnchecked splits the given segment at the given key and returns // iterators to the two resulting segments. All existing iterators (including // seg, but not including the returned iterators) are invalidated. // // Preconditions: seg.Start() < key < seg.End(). func (s *usageSet) SplitUnchecked(seg usageIterator, split uint64) (usageIterator, usageIterator) { val1, val2 := (usageSetFunctions{}).Split(seg.Range(), seg.Value(), split) end2 := seg.End() seg.SetEndUnchecked(split) seg.SetValue(val1) seg2 := s.InsertWithoutMergingUnchecked(seg.NextGap(), __generics_imported0.FileRange{split, end2}, val2) return seg2.PrevSegment(), seg2 } // SplitAt splits the segment straddling split, if one exists. SplitAt returns // true if a segment was split and false otherwise. If SplitAt splits a // segment, all existing iterators are invalidated. func (s *usageSet) SplitAt(split uint64) bool { if seg := s.FindSegment(split); seg.Ok() && seg.Range().CanSplitAt(split) { s.SplitUnchecked(seg, split) return true } return false } // Isolate ensures that the given segment's range does not escape r by // splitting at r.Start and r.End if necessary, and returns an updated iterator // to the bounded segment. All existing iterators (including seg, but not // including the returned iterators) are invalidated. func (s *usageSet) Isolate(seg usageIterator, r __generics_imported0.FileRange) usageIterator { if seg.Range().CanSplitAt(r.Start) { _, seg = s.SplitUnchecked(seg, r.Start) } if seg.Range().CanSplitAt(r.End) { seg, _ = s.SplitUnchecked(seg, r.End) } return seg } // ApplyContiguous applies a function to a contiguous range of segments, // splitting if necessary. The function is applied until the first gap is // encountered, at which point the gap is returned. If the function is applied // across the entire range, a terminal gap is returned. All existing iterators // are invalidated. // // N.B. The Iterator must not be invalidated by the function. func (s *usageSet) ApplyContiguous(r __generics_imported0.FileRange, fn func(seg usageIterator)) usageGapIterator { seg, gap := s.Find(r.Start) if !seg.Ok() { return gap } for { seg = s.Isolate(seg, r) fn(seg) if seg.End() >= r.End { return usageGapIterator{} } gap = seg.NextGap() if !gap.IsEmpty() { return gap } seg = gap.NextSegment() if !seg.Ok() { return usageGapIterator{} } } } // +stateify savable type usagenode struct { // An internal binary tree node looks like: // // K // / \ // Cl Cr // // where all keys in the subtree rooted by Cl (the left subtree) are less // than K (the key of the parent node), and all keys in the subtree rooted // by Cr (the right subtree) are greater than K. // // An internal B-tree node's indexes work out to look like: // // K0 K1 K2 ... Kn-1 // / \/ \/ \ ... / \ // C0 C1 C2 C3 ... Cn-1 Cn // // where n is nrSegments. nrSegments int // parent is a pointer to this node's parent. If this node is root, parent // is nil. parent *usagenode // parentIndex is the index of this node in parent.children. parentIndex int // Flag for internal nodes that is technically redundant with "children[0] // != nil", but is stored in the first cache line. "hasChildren" rather // than "isLeaf" because false must be the correct value for an empty root. hasChildren bool // The longest gap within this node. If the node is a leaf, it's simply the // maximum gap among all the (nrSegments+1) gaps formed by its nrSegments keys // including the 0th and nrSegments-th gap possibly shared with its upper-level // nodes; if it's a non-leaf node, it's the max of all children's maxGap. maxGap usagedynamicGap // Nodes store keys and values in separate arrays to maximize locality in // the common case (scanning keys for lookup). keys [usagemaxDegree - 1]__generics_imported0.FileRange values [usagemaxDegree - 1]usageInfo children [usagemaxDegree]*usagenode } // firstSegment returns the first segment in the subtree rooted by n. // // Preconditions: n.nrSegments != 0. func (n *usagenode) firstSegment() usageIterator { for n.hasChildren { n = n.children[0] } return usageIterator{n, 0} } // lastSegment returns the last segment in the subtree rooted by n. // // Preconditions: n.nrSegments != 0. func (n *usagenode) lastSegment() usageIterator { for n.hasChildren { n = n.children[n.nrSegments] } return usageIterator{n, n.nrSegments - 1} } func (n *usagenode) prevSibling() *usagenode { if n.parent == nil || n.parentIndex == 0 { return nil } return n.parent.children[n.parentIndex-1] } func (n *usagenode) nextSibling() *usagenode { if n.parent == nil || n.parentIndex == n.parent.nrSegments { return nil } return n.parent.children[n.parentIndex+1] } // rebalanceBeforeInsert splits n and its ancestors if they are full, as // required for insertion, and returns an updated iterator to the position // represented by gap. func (n *usagenode) rebalanceBeforeInsert(gap usageGapIterator) usageGapIterator { if n.nrSegments < usagemaxDegree-1 { return gap } if n.parent != nil { gap = n.parent.rebalanceBeforeInsert(gap) } if n.parent == nil { left := &usagenode{ nrSegments: usageminDegree - 1, parent: n, parentIndex: 0, hasChildren: n.hasChildren, } right := &usagenode{ nrSegments: usageminDegree - 1, parent: n, parentIndex: 1, hasChildren: n.hasChildren, } copy(left.keys[:usageminDegree-1], n.keys[:usageminDegree-1]) copy(left.values[:usageminDegree-1], n.values[:usageminDegree-1]) copy(right.keys[:usageminDegree-1], n.keys[usageminDegree:]) copy(right.values[:usageminDegree-1], n.values[usageminDegree:]) n.keys[0], n.values[0] = n.keys[usageminDegree-1], n.values[usageminDegree-1] usagezeroValueSlice(n.values[1:]) if n.hasChildren { copy(left.children[:usageminDegree], n.children[:usageminDegree]) copy(right.children[:usageminDegree], n.children[usageminDegree:]) usagezeroNodeSlice(n.children[2:]) for i := 0; i < usageminDegree; i++ { left.children[i].parent = left left.children[i].parentIndex = i right.children[i].parent = right right.children[i].parentIndex = i } } n.nrSegments = 1 n.hasChildren = true n.children[0] = left n.children[1] = right if usagetrackGaps != 0 { left.updateMaxGapLocal() right.updateMaxGapLocal() } if gap.node != n { return gap } if gap.index < usageminDegree { return usageGapIterator{left, gap.index} } return usageGapIterator{right, gap.index - usageminDegree} } copy(n.parent.keys[n.parentIndex+1:], n.parent.keys[n.parentIndex:n.parent.nrSegments]) copy(n.parent.values[n.parentIndex+1:], n.parent.values[n.parentIndex:n.parent.nrSegments]) n.parent.keys[n.parentIndex], n.parent.values[n.parentIndex] = n.keys[usageminDegree-1], n.values[usageminDegree-1] copy(n.parent.children[n.parentIndex+2:], n.parent.children[n.parentIndex+1:n.parent.nrSegments+1]) for i := n.parentIndex + 2; i < n.parent.nrSegments+2; i++ { n.parent.children[i].parentIndex = i } sibling := &usagenode{ nrSegments: usageminDegree - 1, parent: n.parent, parentIndex: n.parentIndex + 1, hasChildren: n.hasChildren, } n.parent.children[n.parentIndex+1] = sibling n.parent.nrSegments++ copy(sibling.keys[:usageminDegree-1], n.keys[usageminDegree:]) copy(sibling.values[:usageminDegree-1], n.values[usageminDegree:]) usagezeroValueSlice(n.values[usageminDegree-1:]) if n.hasChildren { copy(sibling.children[:usageminDegree], n.children[usageminDegree:]) usagezeroNodeSlice(n.children[usageminDegree:]) for i := 0; i < usageminDegree; i++ { sibling.children[i].parent = sibling sibling.children[i].parentIndex = i } } n.nrSegments = usageminDegree - 1 if usagetrackGaps != 0 { n.updateMaxGapLocal() sibling.updateMaxGapLocal() } if gap.node != n { return gap } if gap.index < usageminDegree { return gap } return usageGapIterator{sibling, gap.index - usageminDegree} } // rebalanceAfterRemove "unsplits" n and its ancestors if they are deficient // (contain fewer segments than required by B-tree invariants), as required for // removal, and returns an updated iterator to the position represented by gap. // // Precondition: n is the only node in the tree that may currently violate a // B-tree invariant. func (n *usagenode) rebalanceAfterRemove(gap usageGapIterator) usageGapIterator { for { if n.nrSegments >= usageminDegree-1 { return gap } if n.parent == nil { return gap } if sibling := n.prevSibling(); sibling != nil && sibling.nrSegments >= usageminDegree { copy(n.keys[1:], n.keys[:n.nrSegments]) copy(n.values[1:], n.values[:n.nrSegments]) n.keys[0] = n.parent.keys[n.parentIndex-1] n.values[0] = n.parent.values[n.parentIndex-1] n.parent.keys[n.parentIndex-1] = sibling.keys[sibling.nrSegments-1] n.parent.values[n.parentIndex-1] = sibling.values[sibling.nrSegments-1] usageSetFunctions{}.ClearValue(&sibling.values[sibling.nrSegments-1]) if n.hasChildren { copy(n.children[1:], n.children[:n.nrSegments+1]) n.children[0] = sibling.children[sibling.nrSegments] sibling.children[sibling.nrSegments] = nil n.children[0].parent = n n.children[0].parentIndex = 0 for i := 1; i < n.nrSegments+2; i++ { n.children[i].parentIndex = i } } n.nrSegments++ sibling.nrSegments-- if usagetrackGaps != 0 { n.updateMaxGapLocal() sibling.updateMaxGapLocal() } if gap.node == sibling && gap.index == sibling.nrSegments { return usageGapIterator{n, 0} } if gap.node == n { return usageGapIterator{n, gap.index + 1} } return gap } if sibling := n.nextSibling(); sibling != nil && sibling.nrSegments >= usageminDegree { n.keys[n.nrSegments] = n.parent.keys[n.parentIndex] n.values[n.nrSegments] = n.parent.values[n.parentIndex] n.parent.keys[n.parentIndex] = sibling.keys[0] n.parent.values[n.parentIndex] = sibling.values[0] copy(sibling.keys[:sibling.nrSegments-1], sibling.keys[1:]) copy(sibling.values[:sibling.nrSegments-1], sibling.values[1:]) usageSetFunctions{}.ClearValue(&sibling.values[sibling.nrSegments-1]) if n.hasChildren { n.children[n.nrSegments+1] = sibling.children[0] copy(sibling.children[:sibling.nrSegments], sibling.children[1:]) sibling.children[sibling.nrSegments] = nil n.children[n.nrSegments+1].parent = n n.children[n.nrSegments+1].parentIndex = n.nrSegments + 1 for i := 0; i < sibling.nrSegments; i++ { sibling.children[i].parentIndex = i } } n.nrSegments++ sibling.nrSegments-- if usagetrackGaps != 0 { n.updateMaxGapLocal() sibling.updateMaxGapLocal() } if gap.node == sibling { if gap.index == 0 { return usageGapIterator{n, n.nrSegments} } return usageGapIterator{sibling, gap.index - 1} } return gap } p := n.parent if p.nrSegments == 1 { left, right := p.children[0], p.children[1] p.nrSegments = left.nrSegments + right.nrSegments + 1 p.hasChildren = left.hasChildren p.keys[left.nrSegments] = p.keys[0] p.values[left.nrSegments] = p.values[0] copy(p.keys[:left.nrSegments], left.keys[:left.nrSegments]) copy(p.values[:left.nrSegments], left.values[:left.nrSegments]) copy(p.keys[left.nrSegments+1:], right.keys[:right.nrSegments]) copy(p.values[left.nrSegments+1:], right.values[:right.nrSegments]) if left.hasChildren { copy(p.children[:left.nrSegments+1], left.children[:left.nrSegments+1]) copy(p.children[left.nrSegments+1:], right.children[:right.nrSegments+1]) for i := 0; i < p.nrSegments+1; i++ { p.children[i].parent = p p.children[i].parentIndex = i } } else { p.children[0] = nil p.children[1] = nil } if gap.node == left { return usageGapIterator{p, gap.index} } if gap.node == right { return usageGapIterator{p, gap.index + left.nrSegments + 1} } return gap } // Merge n and either sibling, along with the segment separating the // two, into whichever of the two nodes comes first. This is the // reverse of the non-root splitting case in // node.rebalanceBeforeInsert. var left, right *usagenode if n.parentIndex > 0 { left = n.prevSibling() right = n } else { left = n right = n.nextSibling() } if gap.node == right { gap = usageGapIterator{left, gap.index + left.nrSegments + 1} } left.keys[left.nrSegments] = p.keys[left.parentIndex] left.values[left.nrSegments] = p.values[left.parentIndex] copy(left.keys[left.nrSegments+1:], right.keys[:right.nrSegments]) copy(left.values[left.nrSegments+1:], right.values[:right.nrSegments]) if left.hasChildren { copy(left.children[left.nrSegments+1:], right.children[:right.nrSegments+1]) for i := left.nrSegments + 1; i < left.nrSegments+right.nrSegments+2; i++ { left.children[i].parent = left left.children[i].parentIndex = i } } left.nrSegments += right.nrSegments + 1 copy(p.keys[left.parentIndex:], p.keys[left.parentIndex+1:p.nrSegments]) copy(p.values[left.parentIndex:], p.values[left.parentIndex+1:p.nrSegments]) usageSetFunctions{}.ClearValue(&p.values[p.nrSegments-1]) copy(p.children[left.parentIndex+1:], p.children[left.parentIndex+2:p.nrSegments+1]) for i := 0; i < p.nrSegments; i++ { p.children[i].parentIndex = i } p.children[p.nrSegments] = nil p.nrSegments-- if usagetrackGaps != 0 { left.updateMaxGapLocal() } n = p } } // updateMaxGapLeaf updates maxGap bottom-up from the calling leaf until no // necessary update. // // Preconditions: n must be a leaf node, trackGaps must be 1. func (n *usagenode) updateMaxGapLeaf() { if n.hasChildren { panic(fmt.Sprintf("updateMaxGapLeaf should always be called on leaf node: %v", n)) } max := n.calculateMaxGapLeaf() if max == n.maxGap.Get() { return } oldMax := n.maxGap.Get() n.maxGap.Set(max) if max > oldMax { for p := n.parent; p != nil; p = p.parent { if p.maxGap.Get() >= max { break } p.maxGap.Set(max) } return } for p := n.parent; p != nil; p = p.parent { if p.maxGap.Get() > oldMax { break } parentNewMax := p.calculateMaxGapInternal() if p.maxGap.Get() == parentNewMax { break } p.maxGap.Set(parentNewMax) } } // updateMaxGapLocal updates maxGap of the calling node solely with no // propagation to ancestor nodes. // // Precondition: trackGaps must be 1. func (n *usagenode) updateMaxGapLocal() { if !n.hasChildren { n.maxGap.Set(n.calculateMaxGapLeaf()) } else { n.maxGap.Set(n.calculateMaxGapInternal()) } } // calculateMaxGapLeaf iterates the gaps within a leaf node and calculate the // max. // // Preconditions: n must be a leaf node. func (n *usagenode) calculateMaxGapLeaf() uint64 { max := usageGapIterator{n, 0}.Range().Length() for i := 1; i <= n.nrSegments; i++ { if current := (usageGapIterator{n, i}).Range().Length(); current > max { max = current } } return max } // calculateMaxGapInternal iterates children's maxGap within an internal node n // and calculate the max. // // Preconditions: n must be a non-leaf node. func (n *usagenode) calculateMaxGapInternal() uint64 { max := n.children[0].maxGap.Get() for i := 1; i <= n.nrSegments; i++ { if current := n.children[i].maxGap.Get(); current > max { max = current } } return max } // searchFirstLargeEnoughGap returns the first gap having at least minSize length // in the subtree rooted by n. If not found, return a terminal gap iterator. func (n *usagenode) searchFirstLargeEnoughGap(minSize uint64) usageGapIterator { if n.maxGap.Get() < minSize { return usageGapIterator{} } if n.hasChildren { for i := 0; i <= n.nrSegments; i++ { if largeEnoughGap := n.children[i].searchFirstLargeEnoughGap(minSize); largeEnoughGap.Ok() { return largeEnoughGap } } } else { for i := 0; i <= n.nrSegments; i++ { currentGap := usageGapIterator{n, i} if currentGap.Range().Length() >= minSize { return currentGap } } } panic(fmt.Sprintf("invalid maxGap in %v", n)) } // searchLastLargeEnoughGap returns the last gap having at least minSize length // in the subtree rooted by n. If not found, return a terminal gap iterator. func (n *usagenode) searchLastLargeEnoughGap(minSize uint64) usageGapIterator { if n.maxGap.Get() < minSize { return usageGapIterator{} } if n.hasChildren { for i := n.nrSegments; i >= 0; i-- { if largeEnoughGap := n.children[i].searchLastLargeEnoughGap(minSize); largeEnoughGap.Ok() { return largeEnoughGap } } } else { for i := n.nrSegments; i >= 0; i-- { currentGap := usageGapIterator{n, i} if currentGap.Range().Length() >= minSize { return currentGap } } } panic(fmt.Sprintf("invalid maxGap in %v", n)) } // A Iterator is conceptually one of: // // - A pointer to a segment in a set; or // // - A terminal iterator, which is a sentinel indicating that the end of // iteration has been reached. // // Iterators are copyable values and are meaningfully equality-comparable. The // zero value of Iterator is a terminal iterator. // // Unless otherwise specified, any mutation of a set invalidates all existing // iterators into the set. type usageIterator struct { // node is the node containing the iterated segment. If the iterator is // terminal, node is nil. node *usagenode // index is the index of the segment in node.keys/values. index int } // Ok returns true if the iterator is not terminal. All other methods are only // valid for non-terminal iterators. func (seg usageIterator) Ok() bool { return seg.node != nil } // Range returns the iterated segment's range key. func (seg usageIterator) Range() __generics_imported0.FileRange { return seg.node.keys[seg.index] } // Start is equivalent to Range().Start, but should be preferred if only the // start of the range is needed. func (seg usageIterator) Start() uint64 { return seg.node.keys[seg.index].Start } // End is equivalent to Range().End, but should be preferred if only the end of // the range is needed. func (seg usageIterator) End() uint64 { return seg.node.keys[seg.index].End } // SetRangeUnchecked mutates the iterated segment's range key. This operation // does not invalidate any iterators. // // Preconditions: // * r.Length() > 0. // * The new range must not overlap an existing one: // * If seg.NextSegment().Ok(), then r.end <= seg.NextSegment().Start(). // * If seg.PrevSegment().Ok(), then r.start >= seg.PrevSegment().End(). func (seg usageIterator) SetRangeUnchecked(r __generics_imported0.FileRange) { seg.node.keys[seg.index] = r } // SetRange mutates the iterated segment's range key. If the new range would // cause the iterated segment to overlap another segment, or if the new range // is invalid, SetRange panics. This operation does not invalidate any // iterators. func (seg usageIterator) SetRange(r __generics_imported0.FileRange) { if r.Length() <= 0 { panic(fmt.Sprintf("invalid segment range %v", r)) } if prev := seg.PrevSegment(); prev.Ok() && r.Start < prev.End() { panic(fmt.Sprintf("new segment range %v overlaps segment range %v", r, prev.Range())) } if next := seg.NextSegment(); next.Ok() && r.End > next.Start() { panic(fmt.Sprintf("new segment range %v overlaps segment range %v", r, next.Range())) } seg.SetRangeUnchecked(r) } // SetStartUnchecked mutates the iterated segment's start. This operation does // not invalidate any iterators. // // Preconditions: The new start must be valid: // * start < seg.End() // * If seg.PrevSegment().Ok(), then start >= seg.PrevSegment().End(). func (seg usageIterator) SetStartUnchecked(start uint64) { seg.node.keys[seg.index].Start = start } // SetStart mutates the iterated segment's start. If the new start value would // cause the iterated segment to overlap another segment, or would result in an // invalid range, SetStart panics. This operation does not invalidate any // iterators. func (seg usageIterator) SetStart(start uint64) { if start >= seg.End() { panic(fmt.Sprintf("new start %v would invalidate segment range %v", start, seg.Range())) } if prev := seg.PrevSegment(); prev.Ok() && start < prev.End() { panic(fmt.Sprintf("new start %v would cause segment range %v to overlap segment range %v", start, seg.Range(), prev.Range())) } seg.SetStartUnchecked(start) } // SetEndUnchecked mutates the iterated segment's end. This operation does not // invalidate any iterators. // // Preconditions: The new end must be valid: // * end > seg.Start(). // * If seg.NextSegment().Ok(), then end <= seg.NextSegment().Start(). func (seg usageIterator) SetEndUnchecked(end uint64) { seg.node.keys[seg.index].End = end } // SetEnd mutates the iterated segment's end. If the new end value would cause // the iterated segment to overlap another segment, or would result in an // invalid range, SetEnd panics. This operation does not invalidate any // iterators. func (seg usageIterator) SetEnd(end uint64) { if end <= seg.Start() { panic(fmt.Sprintf("new end %v would invalidate segment range %v", end, seg.Range())) } if next := seg.NextSegment(); next.Ok() && end > next.Start() { panic(fmt.Sprintf("new end %v would cause segment range %v to overlap segment range %v", end, seg.Range(), next.Range())) } seg.SetEndUnchecked(end) } // Value returns a copy of the iterated segment's value. func (seg usageIterator) Value() usageInfo { return seg.node.values[seg.index] } // ValuePtr returns a pointer to the iterated segment's value. The pointer is // invalidated if the iterator is invalidated. This operation does not // invalidate any iterators. func (seg usageIterator) ValuePtr() *usageInfo { return &seg.node.values[seg.index] } // SetValue mutates the iterated segment's value. This operation does not // invalidate any iterators. func (seg usageIterator) SetValue(val usageInfo) { seg.node.values[seg.index] = val } // PrevSegment returns the iterated segment's predecessor. If there is no // preceding segment, PrevSegment returns a terminal iterator. func (seg usageIterator) PrevSegment() usageIterator { if seg.node.hasChildren { return seg.node.children[seg.index].lastSegment() } if seg.index > 0 { return usageIterator{seg.node, seg.index - 1} } if seg.node.parent == nil { return usageIterator{} } return usagesegmentBeforePosition(seg.node.parent, seg.node.parentIndex) } // NextSegment returns the iterated segment's successor. If there is no // succeeding segment, NextSegment returns a terminal iterator. func (seg usageIterator) NextSegment() usageIterator { if seg.node.hasChildren { return seg.node.children[seg.index+1].firstSegment() } if seg.index < seg.node.nrSegments-1 { return usageIterator{seg.node, seg.index + 1} } if seg.node.parent == nil { return usageIterator{} } return usagesegmentAfterPosition(seg.node.parent, seg.node.parentIndex) } // PrevGap returns the gap immediately before the iterated segment. func (seg usageIterator) PrevGap() usageGapIterator { if seg.node.hasChildren { return seg.node.children[seg.index].lastSegment().NextGap() } return usageGapIterator{seg.node, seg.index} } // NextGap returns the gap immediately after the iterated segment. func (seg usageIterator) NextGap() usageGapIterator { if seg.node.hasChildren { return seg.node.children[seg.index+1].firstSegment().PrevGap() } return usageGapIterator{seg.node, seg.index + 1} } // PrevNonEmpty returns the iterated segment's predecessor if it is adjacent, // or the gap before the iterated segment otherwise. If seg.Start() == // Functions.MinKey(), PrevNonEmpty will return two terminal iterators. // Otherwise, exactly one of the iterators returned by PrevNonEmpty will be // non-terminal. func (seg usageIterator) PrevNonEmpty() (usageIterator, usageGapIterator) { gap := seg.PrevGap() if gap.Range().Length() != 0 { return usageIterator{}, gap } return gap.PrevSegment(), usageGapIterator{} } // NextNonEmpty returns the iterated segment's successor if it is adjacent, or // the gap after the iterated segment otherwise. If seg.End() == // Functions.MaxKey(), NextNonEmpty will return two terminal iterators. // Otherwise, exactly one of the iterators returned by NextNonEmpty will be // non-terminal. func (seg usageIterator) NextNonEmpty() (usageIterator, usageGapIterator) { gap := seg.NextGap() if gap.Range().Length() != 0 { return usageIterator{}, gap } return gap.NextSegment(), usageGapIterator{} } // A GapIterator is conceptually one of: // // - A pointer to a position between two segments, before the first segment, or // after the last segment in a set, called a *gap*; or // // - A terminal iterator, which is a sentinel indicating that the end of // iteration has been reached. // // Note that the gap between two adjacent segments exists (iterators to it are // non-terminal), but has a length of zero. GapIterator.IsEmpty returns true // for such gaps. An empty set contains a single gap, spanning the entire range // of the set's keys. // // GapIterators are copyable values and are meaningfully equality-comparable. // The zero value of GapIterator is a terminal iterator. // // Unless otherwise specified, any mutation of a set invalidates all existing // iterators into the set. type usageGapIterator struct { // The representation of a GapIterator is identical to that of an Iterator, // except that index corresponds to positions between segments in the same // way as for node.children (see comment for node.nrSegments). node *usagenode index int } // Ok returns true if the iterator is not terminal. All other methods are only // valid for non-terminal iterators. func (gap usageGapIterator) Ok() bool { return gap.node != nil } // Range returns the range spanned by the iterated gap. func (gap usageGapIterator) Range() __generics_imported0.FileRange { return __generics_imported0.FileRange{gap.Start(), gap.End()} } // Start is equivalent to Range().Start, but should be preferred if only the // start of the range is needed. func (gap usageGapIterator) Start() uint64 { if ps := gap.PrevSegment(); ps.Ok() { return ps.End() } return usageSetFunctions{}.MinKey() } // End is equivalent to Range().End, but should be preferred if only the end of // the range is needed. func (gap usageGapIterator) End() uint64 { if ns := gap.NextSegment(); ns.Ok() { return ns.Start() } return usageSetFunctions{}.MaxKey() } // IsEmpty returns true if the iterated gap is empty (that is, the "gap" is // between two adjacent segments.) func (gap usageGapIterator) IsEmpty() bool { return gap.Range().Length() == 0 } // PrevSegment returns the segment immediately before the iterated gap. If no // such segment exists, PrevSegment returns a terminal iterator. func (gap usageGapIterator) PrevSegment() usageIterator { return usagesegmentBeforePosition(gap.node, gap.index) } // NextSegment returns the segment immediately after the iterated gap. If no // such segment exists, NextSegment returns a terminal iterator. func (gap usageGapIterator) NextSegment() usageIterator { return usagesegmentAfterPosition(gap.node, gap.index) } // PrevGap returns the iterated gap's predecessor. If no such gap exists, // PrevGap returns a terminal iterator. func (gap usageGapIterator) PrevGap() usageGapIterator { seg := gap.PrevSegment() if !seg.Ok() { return usageGapIterator{} } return seg.PrevGap() } // NextGap returns the iterated gap's successor. If no such gap exists, NextGap // returns a terminal iterator. func (gap usageGapIterator) NextGap() usageGapIterator { seg := gap.NextSegment() if !seg.Ok() { return usageGapIterator{} } return seg.NextGap() } // NextLargeEnoughGap returns the iterated gap's first next gap with larger // length than minSize. If not found, return a terminal gap iterator (does NOT // include this gap itself). // // Precondition: trackGaps must be 1. func (gap usageGapIterator) NextLargeEnoughGap(minSize uint64) usageGapIterator { if usagetrackGaps != 1 { panic("set is not tracking gaps") } if gap.node != nil && gap.node.hasChildren && gap.index == gap.node.nrSegments { gap.node = gap.NextSegment().node gap.index = 0 return gap.nextLargeEnoughGapHelper(minSize) } return gap.nextLargeEnoughGapHelper(minSize) } // nextLargeEnoughGapHelper is the helper function used by NextLargeEnoughGap // to do the real recursions. // // Preconditions: gap is NOT the trailing gap of a non-leaf node. func (gap usageGapIterator) nextLargeEnoughGapHelper(minSize uint64) usageGapIterator { for gap.node != nil && (gap.node.maxGap.Get() < minSize || (!gap.node.hasChildren && gap.index == gap.node.nrSegments)) { gap.node, gap.index = gap.node.parent, gap.node.parentIndex } if gap.node == nil { return usageGapIterator{} } gap.index++ for gap.index <= gap.node.nrSegments { if gap.node.hasChildren { if largeEnoughGap := gap.node.children[gap.index].searchFirstLargeEnoughGap(minSize); largeEnoughGap.Ok() { return largeEnoughGap } } else { if gap.Range().Length() >= minSize { return gap } } gap.index++ } gap.node, gap.index = gap.node.parent, gap.node.parentIndex if gap.node != nil && gap.index == gap.node.nrSegments { gap.node, gap.index = gap.node.parent, gap.node.parentIndex } return gap.nextLargeEnoughGapHelper(minSize) } // PrevLargeEnoughGap returns the iterated gap's first prev gap with larger or // equal length than minSize. If not found, return a terminal gap iterator // (does NOT include this gap itself). // // Precondition: trackGaps must be 1. func (gap usageGapIterator) PrevLargeEnoughGap(minSize uint64) usageGapIterator { if usagetrackGaps != 1 { panic("set is not tracking gaps") } if gap.node != nil && gap.node.hasChildren && gap.index == 0 { gap.node = gap.PrevSegment().node gap.index = gap.node.nrSegments return gap.prevLargeEnoughGapHelper(minSize) } return gap.prevLargeEnoughGapHelper(minSize) } // prevLargeEnoughGapHelper is the helper function used by PrevLargeEnoughGap // to do the real recursions. // // Preconditions: gap is NOT the first gap of a non-leaf node. func (gap usageGapIterator) prevLargeEnoughGapHelper(minSize uint64) usageGapIterator { for gap.node != nil && (gap.node.maxGap.Get() < minSize || (!gap.node.hasChildren && gap.index == 0)) { gap.node, gap.index = gap.node.parent, gap.node.parentIndex } if gap.node == nil { return usageGapIterator{} } gap.index-- for gap.index >= 0 { if gap.node.hasChildren { if largeEnoughGap := gap.node.children[gap.index].searchLastLargeEnoughGap(minSize); largeEnoughGap.Ok() { return largeEnoughGap } } else { if gap.Range().Length() >= minSize { return gap } } gap.index-- } gap.node, gap.index = gap.node.parent, gap.node.parentIndex if gap.node != nil && gap.index == 0 { gap.node, gap.index = gap.node.parent, gap.node.parentIndex } return gap.prevLargeEnoughGapHelper(minSize) } // segmentBeforePosition returns the predecessor segment of the position given // by n.children[i], which may or may not contain a child. If no such segment // exists, segmentBeforePosition returns a terminal iterator. func usagesegmentBeforePosition(n *usagenode, i int) usageIterator { for i == 0 { if n.parent == nil { return usageIterator{} } n, i = n.parent, n.parentIndex } return usageIterator{n, i - 1} } // segmentAfterPosition returns the successor segment of the position given by // n.children[i], which may or may not contain a child. If no such segment // exists, segmentAfterPosition returns a terminal iterator. func usagesegmentAfterPosition(n *usagenode, i int) usageIterator { for i == n.nrSegments { if n.parent == nil { return usageIterator{} } n, i = n.parent, n.parentIndex } return usageIterator{n, i} } func usagezeroValueSlice(slice []usageInfo) { for i := range slice { usageSetFunctions{}.ClearValue(&slice[i]) } } func usagezeroNodeSlice(slice []*usagenode) { for i := range slice { slice[i] = nil } } // String stringifies a Set for debugging. func (s *usageSet) String() string { return s.root.String() } // String stringifies a node (and all of its children) for debugging. func (n *usagenode) String() string { var buf bytes.Buffer n.writeDebugString(&buf, "") return buf.String() } func (n *usagenode) writeDebugString(buf *bytes.Buffer, prefix string) { if n.hasChildren != (n.nrSegments > 0 && n.children[0] != nil) { buf.WriteString(prefix) buf.WriteString(fmt.Sprintf("WARNING: inconsistent value of hasChildren: got %v, want %v\n", n.hasChildren, !n.hasChildren)) } for i := 0; i < n.nrSegments; i++ { if child := n.children[i]; child != nil { cprefix := fmt.Sprintf("%s- % 3d ", prefix, i) if child.parent != n || child.parentIndex != i { buf.WriteString(cprefix) buf.WriteString(fmt.Sprintf("WARNING: inconsistent linkage to parent: got (%p, %d), want (%p, %d)\n", child.parent, child.parentIndex, n, i)) } child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, i)) } buf.WriteString(prefix) if n.hasChildren { if usagetrackGaps != 0 { buf.WriteString(fmt.Sprintf("- % 3d: %v => %v, maxGap: %d\n", i, n.keys[i], n.values[i], n.maxGap.Get())) } else { buf.WriteString(fmt.Sprintf("- % 3d: %v => %v\n", i, n.keys[i], n.values[i])) } } else { buf.WriteString(fmt.Sprintf("- % 3d: %v => %v\n", i, n.keys[i], n.values[i])) } } if child := n.children[n.nrSegments]; child != nil { child.writeDebugString(buf, fmt.Sprintf("%s- % 3d ", prefix, n.nrSegments)) } } // SegmentDataSlices represents segments from a set as slices of start, end, and // values. SegmentDataSlices is primarily used as an intermediate representation // for save/restore and the layout here is optimized for that. // // +stateify savable type usageSegmentDataSlices struct { Start []uint64 End []uint64 Values []usageInfo } // ExportSortedSlices returns a copy of all segments in the given set, in // ascending key order. func (s *usageSet) ExportSortedSlices() *usageSegmentDataSlices { var sds usageSegmentDataSlices for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() { sds.Start = append(sds.Start, seg.Start()) sds.End = append(sds.End, seg.End()) sds.Values = append(sds.Values, seg.Value()) } sds.Start = sds.Start[:len(sds.Start):len(sds.Start)] sds.End = sds.End[:len(sds.End):len(sds.End)] sds.Values = sds.Values[:len(sds.Values):len(sds.Values)] return &sds } // ImportSortedSlices initializes the given set from the given slice. // // Preconditions: // * s must be empty. // * sds must represent a valid set (the segments in sds must have valid // lengths that do not overlap). // * The segments in sds must be sorted in ascending key order. func (s *usageSet) ImportSortedSlices(sds *usageSegmentDataSlices) error { if !s.IsEmpty() { return fmt.Errorf("cannot import into non-empty set %v", s) } gap := s.FirstGap() for i := range sds.Start { r := __generics_imported0.FileRange{sds.Start[i], sds.End[i]} if !gap.Range().IsSupersetOf(r) { return fmt.Errorf("segment overlaps a preceding segment or is incorrectly sorted: [%d, %d) => %v", sds.Start[i], sds.End[i], sds.Values[i]) } gap = s.InsertWithoutMerging(gap, r, sds.Values[i]).NextGap() } return nil } // segmentTestCheck returns an error if s is incorrectly sorted, does not // contain exactly expectedSegments segments, or contains a segment which // fails the passed check. // // This should be used only for testing, and has been added to this package for // templating convenience. func (s *usageSet) segmentTestCheck(expectedSegments int, segFunc func(int, __generics_imported0.FileRange, usageInfo) error) error { havePrev := false prev := uint64(0) nrSegments := 0 for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() { next := seg.Start() if havePrev && prev >= next { return fmt.Errorf("incorrect order: key %d (segment %d) >= key %d (segment %d)", prev, nrSegments-1, next, nrSegments) } if segFunc != nil { if err := segFunc(nrSegments, seg.Range(), seg.Value()); err != nil { return err } } prev = next havePrev = true nrSegments++ } if nrSegments != expectedSegments { return fmt.Errorf("incorrect number of segments: got %d, wanted %d", nrSegments, expectedSegments) } return nil } // countSegments counts the number of segments in the set. // // Similar to Check, this should only be used for testing. func (s *usageSet) countSegments() (segments int) { for seg := s.FirstSegment(); seg.Ok(); seg = seg.NextSegment() { segments++ } return segments } func (s *usageSet) saveRoot() *usageSegmentDataSlices { return s.ExportSortedSlices() } func (s *usageSet) loadRoot(sds *usageSegmentDataSlices) { if err := s.ImportSortedSlices(sds); err != nil { panic(err) } }