// Copyright 2018 The gVisor Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Package loader loads an executable file into a MemoryManager. package loader import ( "bytes" "fmt" "io" "path" "strings" "gvisor.dev/gvisor/pkg/abi" "gvisor.dev/gvisor/pkg/abi/linux" "gvisor.dev/gvisor/pkg/cpuid" "gvisor.dev/gvisor/pkg/rand" "gvisor.dev/gvisor/pkg/sentry/arch" "gvisor.dev/gvisor/pkg/sentry/context" "gvisor.dev/gvisor/pkg/sentry/fs" "gvisor.dev/gvisor/pkg/sentry/kernel/auth" "gvisor.dev/gvisor/pkg/sentry/mm" "gvisor.dev/gvisor/pkg/sentry/usermem" "gvisor.dev/gvisor/pkg/syserr" "gvisor.dev/gvisor/pkg/syserror" ) // LoadArgs holds specifications for an executable file to be loaded. type LoadArgs struct { // MemoryManager is the memory manager to load the executable into. MemoryManager *mm.MemoryManager // Mounts is the mount namespace in which to look up Filename. Mounts *fs.MountNamespace // Root is the root directory under which to look up Filename. Root *fs.Dirent // WorkingDirectory is the working directory under which to look up // Filename. WorkingDirectory *fs.Dirent // RemainingTraversals is the maximum number of symlinks to follow to // resolve Filename. This counter is passed by reference to keep it // updated throughout the call stack. RemainingTraversals *uint // ResolveFinal indicates whether the final link of Filename should be // resolved, if it is a symlink. ResolveFinal bool // Filename is the path for the executable. Filename string // File is an open fs.File object of the executable. If File is not // nil, then File will be loaded and Filename will be ignored. File *fs.File // CloseOnExec indicates that the executable (or one of its parent // directories) was opened with O_CLOEXEC. If the executable is an // interpreter script, then cause an ENOENT error to occur, since the // script would otherwise be inaccessible to the interpreter. CloseOnExec bool // Argv is the vector of arguments to pass to the executable. Argv []string // Envv is the vector of environment variables to pass to the // executable. Envv []string // Features specifies the CPU feature set for the executable. Features *cpuid.FeatureSet } // readFull behaves like io.ReadFull for an *fs.File. func readFull(ctx context.Context, f *fs.File, dst usermem.IOSequence, offset int64) (int64, error) { var total int64 for dst.NumBytes() > 0 { n, err := f.Preadv(ctx, dst, offset+total) total += n if err == io.EOF && total != 0 { return total, io.ErrUnexpectedEOF } else if err != nil { return total, err } dst = dst.DropFirst64(n) } return total, nil } // openPath opens args.Filename and checks that it is valid for loading. // // openPath returns an *fs.Dirent and *fs.File for args.Filename, which is not // installed in the Task FDTable. The caller takes ownership of both. // // args.Filename must be a readable, executable, regular file. func openPath(ctx context.Context, args LoadArgs) (*fs.Dirent, *fs.File, error) { if args.Filename == "" { ctx.Infof("cannot open empty name") return nil, nil, syserror.ENOENT } var d *fs.Dirent var err error if args.ResolveFinal { d, err = args.Mounts.FindInode(ctx, args.Root, args.WorkingDirectory, args.Filename, args.RemainingTraversals) } else { d, err = args.Mounts.FindLink(ctx, args.Root, args.WorkingDirectory, args.Filename, args.RemainingTraversals) } if err != nil { return nil, nil, err } // Defer a DecRef for the sake of failure cases. defer d.DecRef() if !args.ResolveFinal && fs.IsSymlink(d.Inode.StableAttr) { return nil, nil, syserror.ELOOP } if err := checkPermission(ctx, d); err != nil { return nil, nil, err } // If they claim it's a directory, then make sure. // // N.B. we reject directories below, but we must first reject // non-directories passed as directories. if strings.HasSuffix(args.Filename, "/") && !fs.IsDir(d.Inode.StableAttr) { return nil, nil, syserror.ENOTDIR } if err := checkIsRegularFile(ctx, d, args.Filename); err != nil { return nil, nil, err } f, err := d.Inode.GetFile(ctx, d, fs.FileFlags{Read: true}) if err != nil { return nil, nil, err } // Defer a DecRef for the sake of failure cases. defer f.DecRef() if err := checkPread(ctx, f, args.Filename); err != nil { return nil, nil, err } d.IncRef() f.IncRef() return d, f, err } // checkFile performs checks on a file to be executed. func checkFile(ctx context.Context, f *fs.File, filename string) error { if err := checkPermission(ctx, f.Dirent); err != nil { return err } if err := checkIsRegularFile(ctx, f.Dirent, filename); err != nil { return err } return checkPread(ctx, f, filename) } // checkPermission checks whether the file is readable and executable. func checkPermission(ctx context.Context, d *fs.Dirent) error { perms := fs.PermMask{ // TODO(gvisor.dev/issue/160): Linux requires only execute // permission, not read. However, our backing filesystems may // prevent us from reading the file without read permission. // // Additionally, a task with a non-readable executable has // additional constraints on access via ptrace and procfs. Read: true, Execute: true, } return d.Inode.CheckPermission(ctx, perms) } // checkIsRegularFile prevents us from trying to execute a directory, pipe, etc. func checkIsRegularFile(ctx context.Context, d *fs.Dirent, filename string) error { attr := d.Inode.StableAttr if !fs.IsRegular(attr) { ctx.Infof("%s is not regular: %v", filename, attr) return syserror.EACCES } return nil } // checkPread checks whether we can read the file at arbitrary offsets. func checkPread(ctx context.Context, f *fs.File, filename string) error { if !f.Flags().Pread { ctx.Infof("%s cannot be read at an offset: %+v", filename, f.Flags()) return syserror.EACCES } return nil } // allocStack allocates and maps a stack in to any available part of the address space. func allocStack(ctx context.Context, m *mm.MemoryManager, a arch.Context) (*arch.Stack, error) { ar, err := m.MapStack(ctx) if err != nil { return nil, err } return &arch.Stack{a, m, ar.End}, nil } const ( // maxLoaderAttempts is the maximum number of attempts to try to load // an interpreter scripts, to prevent loops. 6 (initial + 5 changes) is // what the Linux kernel allows (fs/exec.c:search_binary_handler). maxLoaderAttempts = 6 ) // loadExecutable loads an executable that is pointed to by args.File. If nil, // the path args.Filename is resolved and loaded. If the executable is an // interpreter script rather than an ELF, the binary of the corresponding // interpreter will be loaded. // // It returns: // * loadedELF, description of the loaded binary // * arch.Context matching the binary arch // * fs.Dirent of the binary file // * Possibly updated args.Argv func loadExecutable(ctx context.Context, args LoadArgs) (loadedELF, arch.Context, *fs.Dirent, []string, error) { for i := 0; i < maxLoaderAttempts; i++ { var ( d *fs.Dirent err error ) if args.File == nil { d, args.File, err = openPath(ctx, args) // We will return d in the successful case, but defer a DecRef for the // sake of intermediate loops and failure cases. if d != nil { defer d.DecRef() } if args.File != nil { defer args.File.DecRef() } } else { d = args.File.Dirent d.IncRef() defer d.DecRef() err = checkFile(ctx, args.File, args.Filename) } if err != nil { ctx.Infof("Error opening %s: %v", args.Filename, err) return loadedELF{}, nil, nil, nil, err } // Check the header. Is this an ELF or interpreter script? var hdr [4]uint8 // N.B. We assume that reading from a regular file cannot block. _, err = readFull(ctx, args.File, usermem.BytesIOSequence(hdr[:]), 0) // Allow unexpected EOF, as a valid executable could be only three bytes // (e.g., #!a). if err != nil && err != io.ErrUnexpectedEOF { if err == io.EOF { err = syserror.ENOEXEC } return loadedELF{}, nil, nil, nil, err } switch { case bytes.Equal(hdr[:], []byte(elfMagic)): loaded, ac, err := loadELF(ctx, args) if err != nil { ctx.Infof("Error loading ELF: %v", err) return loadedELF{}, nil, nil, nil, err } // An ELF is always terminal. Hold on to d. d.IncRef() return loaded, ac, d, args.Argv, err case bytes.Equal(hdr[:2], []byte(interpreterScriptMagic)): if args.CloseOnExec { return loadedELF{}, nil, nil, nil, syserror.ENOENT } args.Filename, args.Argv, err = parseInterpreterScript(ctx, args.Filename, args.File, args.Argv) if err != nil { ctx.Infof("Error loading interpreter script: %v", err) return loadedELF{}, nil, nil, nil, err } default: ctx.Infof("Unknown magic: %v", hdr) return loadedELF{}, nil, nil, nil, syserror.ENOEXEC } // Set to nil in case we loop on a Interpreter Script. args.File = nil } return loadedELF{}, nil, nil, nil, syserror.ELOOP } // Load loads args.File into a MemoryManager. If args.File is nil, the path // args.Filename is resolved and loaded instead. // // If Load returns ErrSwitchFile it should be called again with the returned // path and argv. // // Preconditions: // * The Task MemoryManager is empty. // * Load is called on the Task goroutine. func Load(ctx context.Context, args LoadArgs, extraAuxv []arch.AuxEntry, vdso *VDSO) (abi.OS, arch.Context, string, *syserr.Error) { // Load the executable itself. loaded, ac, d, newArgv, err := loadExecutable(ctx, args) if err != nil { return 0, nil, "", syserr.NewDynamic(fmt.Sprintf("Failed to load %s: %v", args.Filename, err), syserr.FromError(err).ToLinux()) } defer d.DecRef() // Load the VDSO. vdsoAddr, err := loadVDSO(ctx, args.MemoryManager, vdso, loaded) if err != nil { return 0, nil, "", syserr.NewDynamic(fmt.Sprintf("Error loading VDSO: %v", err), syserr.FromError(err).ToLinux()) } // Setup the heap. brk starts at the next page after the end of the // executable. Userspace can assume that the remainer of the page after // loaded.end is available for its use. e, ok := loaded.end.RoundUp() if !ok { return 0, nil, "", syserr.NewDynamic(fmt.Sprintf("brk overflows: %#x", loaded.end), linux.ENOEXEC) } args.MemoryManager.BrkSetup(ctx, e) // Allocate our stack. stack, err := allocStack(ctx, args.MemoryManager, ac) if err != nil { return 0, nil, "", syserr.NewDynamic(fmt.Sprintf("Failed to allocate stack: %v", err), syserr.FromError(err).ToLinux()) } // Push the original filename to the stack, for AT_EXECFN. execfn, err := stack.Push(args.Filename) if err != nil { return 0, nil, "", syserr.NewDynamic(fmt.Sprintf("Failed to push exec filename: %v", err), syserr.FromError(err).ToLinux()) } // Push 16 random bytes on the stack which AT_RANDOM will point to. var b [16]byte if _, err := rand.Read(b[:]); err != nil { return 0, nil, "", syserr.NewDynamic(fmt.Sprintf("Failed to read random bytes: %v", err), syserr.FromError(err).ToLinux()) } random, err := stack.Push(b) if err != nil { return 0, nil, "", syserr.NewDynamic(fmt.Sprintf("Failed to push random bytes: %v", err), syserr.FromError(err).ToLinux()) } c := auth.CredentialsFromContext(ctx) // Add generic auxv entries. auxv := append(loaded.auxv, arch.Auxv{ arch.AuxEntry{linux.AT_UID, usermem.Addr(c.RealKUID.In(c.UserNamespace).OrOverflow())}, arch.AuxEntry{linux.AT_EUID, usermem.Addr(c.EffectiveKUID.In(c.UserNamespace).OrOverflow())}, arch.AuxEntry{linux.AT_GID, usermem.Addr(c.RealKGID.In(c.UserNamespace).OrOverflow())}, arch.AuxEntry{linux.AT_EGID, usermem.Addr(c.EffectiveKGID.In(c.UserNamespace).OrOverflow())}, // The conditions that require AT_SECURE = 1 never arise. See // kernel.Task.updateCredsForExecLocked. arch.AuxEntry{linux.AT_SECURE, 0}, arch.AuxEntry{linux.AT_CLKTCK, linux.CLOCKS_PER_SEC}, arch.AuxEntry{linux.AT_EXECFN, execfn}, arch.AuxEntry{linux.AT_RANDOM, random}, arch.AuxEntry{linux.AT_PAGESZ, usermem.PageSize}, arch.AuxEntry{linux.AT_SYSINFO_EHDR, vdsoAddr}, }...) auxv = append(auxv, extraAuxv...) sl, err := stack.Load(newArgv, args.Envv, auxv) if err != nil { return 0, nil, "", syserr.NewDynamic(fmt.Sprintf("Failed to load stack: %v", err), syserr.FromError(err).ToLinux()) } m := args.MemoryManager m.SetArgvStart(sl.ArgvStart) m.SetArgvEnd(sl.ArgvEnd) m.SetEnvvStart(sl.EnvvStart) m.SetEnvvEnd(sl.EnvvEnd) m.SetAuxv(auxv) m.SetExecutable(d) ac.SetIP(uintptr(loaded.entry)) ac.SetStack(uintptr(stack.Bottom)) name := path.Base(args.Filename) if len(name) > linux.TASK_COMM_LEN-1 { name = name[:linux.TASK_COMM_LEN-1] } return loaded.os, ac, name, nil }