// Copyright 2018 Google Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package pipe import ( "sync" "gvisor.googlesource.com/gvisor/pkg/amutex" "gvisor.googlesource.com/gvisor/pkg/sentry/context" "gvisor.googlesource.com/gvisor/pkg/sentry/fs" "gvisor.googlesource.com/gvisor/pkg/syserror" ) // inodeOperations wraps fs.InodeOperations operations with common pipe opening semantics. type inodeOperations struct { fs.InodeOperations // mu protects the fields below. mu sync.Mutex `state:"nosave"` // p is the underlying Pipe object representing this fifo. p *Pipe // Channels for synchronizing the creation of new readers and writers of // this fifo. See waitFor and newHandleLocked. // // These are not saved/restored because all waiters are unblocked on save, // and either automatically restart (via ERESTARTSYS) or return EINTR on // resume. On restarts via ERESTARTSYS, the appropriate channel will be // recreated. rWakeup chan struct{} `state:"nosave"` wWakeup chan struct{} `state:"nosave"` } // NewInodeOperations creates a new pipe fs.InodeOperations. func NewInodeOperations(base fs.InodeOperations, p *Pipe) fs.InodeOperations { return &inodeOperations{ InodeOperations: base, p: p, } } // GetFile implements fs.InodeOperations.GetFile. Named pipes have special blocking // semantics during open: // // "Normally, opening the FIFO blocks until the other end is opened also. A // process can open a FIFO in nonblocking mode. In this case, opening for // read-only will succeed even if no-one has opened on the write side yet, // opening for write-only will fail with ENXIO (no such device or address) // unless the other end has already been opened. Under Linux, opening a FIFO // for read and write will succeed both in blocking and nonblocking mode. POSIX // leaves this behavior undefined. This can be used to open a FIFO for writing // while there are no readers available." - fifo(7) func (i *inodeOperations) GetFile(ctx context.Context, d *fs.Dirent, flags fs.FileFlags) (*fs.File, error) { i.mu.Lock() defer i.mu.Unlock() switch { case flags.Read && !flags.Write: // O_RDONLY. r := i.p.ROpen(ctx) i.newHandleLocked(&i.rWakeup) if i.p.isNamed && !flags.NonBlocking && !i.p.HasWriters() { if !i.waitFor(&i.wWakeup, ctx) { r.DecRef() return nil, syserror.ErrInterrupted } } // By now, either we're doing a nonblocking open or we have a writer. On // a nonblocking read-only open, the open succeeds even if no-one has // opened the write side yet. return r, nil case flags.Write && !flags.Read: // O_WRONLY. w := i.p.WOpen(ctx) i.newHandleLocked(&i.wWakeup) if i.p.isNamed && !i.p.HasReaders() { // On a nonblocking, write-only open, the open fails with ENXIO if the // read side isn't open yet. if flags.NonBlocking { w.DecRef() return nil, syserror.ENXIO } if !i.waitFor(&i.rWakeup, ctx) { w.DecRef() return nil, syserror.ErrInterrupted } } return w, nil case flags.Read && flags.Write: // O_RDWR. // Pipes opened for read-write always succeeds without blocking. rw := i.p.RWOpen(ctx) i.newHandleLocked(&i.rWakeup) i.newHandleLocked(&i.wWakeup) return rw, nil default: return nil, syserror.EINVAL } } // waitFor blocks until the underlying pipe has at least one reader/writer is // announced via 'wakeupChan', or until 'sleeper' is cancelled. Any call to this // function will block for either readers or writers, depending on where // 'wakeupChan' points. // // f.mu must be held by the caller. waitFor returns with f.mu held, but it will // drop f.mu before blocking for any reader/writers. func (i *inodeOperations) waitFor(wakeupChan *chan struct{}, sleeper amutex.Sleeper) bool { // Ideally this function would simply use a condition variable. However, the // wait needs to be interruptible via 'sleeper', so we must sychronize via a // channel. The synchronization below relies on the fact that closing a // channel unblocks all receives on the channel. // Does an appropriate wakeup channel already exist? If not, create a new // one. This is all done under f.mu to avoid races. if *wakeupChan == nil { *wakeupChan = make(chan struct{}) } // Grab a local reference to the wakeup channel since it may disappear as // soon as we drop f.mu. wakeup := *wakeupChan // Drop the lock and prepare to sleep. i.mu.Unlock() cancel := sleeper.SleepStart() // Wait for either a new reader/write to be signalled via 'wakeup', or // for the sleep to be cancelled. select { case <-wakeup: sleeper.SleepFinish(true) case <-cancel: sleeper.SleepFinish(false) } // Take the lock and check if we were woken. If we were woken and // interrupted, the former takes priority. i.mu.Lock() select { case <-wakeup: return true default: return false } } // newHandleLocked signals a new pipe reader or writer depending on where // 'wakeupChan' points. This unblocks any corresponding reader or writer // waiting for the other end of the channel to be opened, see Fifo.waitFor. // // i.mu must be held. func (*inodeOperations) newHandleLocked(wakeupChan *chan struct{}) { if *wakeupChan != nil { close(*wakeupChan) *wakeupChan = nil } }