package kernel import ( "fmt" "sync/atomic" "gvisor.dev/gvisor/pkg/refsvfs2" ) // enableLogging indicates whether reference-related events should be logged (with // stack traces). This is false by default and should only be set to true for // debugging purposes, as it can generate an extremely large amount of output // and drastically degrade performance. const FDTableenableLogging = false // obj is used to customize logging. Note that we use a pointer to T so that // we do not copy the entire object when passed as a format parameter. var FDTableobj *FDTable // Refs implements refs.RefCounter. It keeps a reference count using atomic // operations and calls the destructor when the count reaches zero. // // +stateify savable type FDTableRefs struct { // refCount is composed of two fields: // // [32-bit speculative references]:[32-bit real references] // // Speculative references are used for TryIncRef, to avoid a CompareAndSwap // loop. See IncRef, DecRef and TryIncRef for details of how these fields are // used. refCount int64 } // InitRefs initializes r with one reference and, if enabled, activates leak // checking. func (r *FDTableRefs) InitRefs() { atomic.StoreInt64(&r.refCount, 1) refsvfs2.Register(r) } // RefType implements refsvfs2.CheckedObject.RefType. func (r *FDTableRefs) RefType() string { return fmt.Sprintf("%T", FDTableobj)[1:] } // LeakMessage implements refsvfs2.CheckedObject.LeakMessage. func (r *FDTableRefs) LeakMessage() string { return fmt.Sprintf("[%s %p] reference count of %d instead of 0", r.RefType(), r, r.ReadRefs()) } // LogRefs implements refsvfs2.CheckedObject.LogRefs. func (r *FDTableRefs) LogRefs() bool { return FDTableenableLogging } // ReadRefs returns the current number of references. The returned count is // inherently racy and is unsafe to use without external synchronization. func (r *FDTableRefs) ReadRefs() int64 { return atomic.LoadInt64(&r.refCount) } // IncRef implements refs.RefCounter.IncRef. // //go:nosplit func (r *FDTableRefs) IncRef() { v := atomic.AddInt64(&r.refCount, 1) if FDTableenableLogging { refsvfs2.LogIncRef(r, v) } if v <= 1 { panic(fmt.Sprintf("Incrementing non-positive count %p on %s", r, r.RefType())) } } // TryIncRef implements refs.RefCounter.TryIncRef. // // To do this safely without a loop, a speculative reference is first acquired // on the object. This allows multiple concurrent TryIncRef calls to distinguish // other TryIncRef calls from genuine references held. // //go:nosplit func (r *FDTableRefs) TryIncRef() bool { const speculativeRef = 1 << 32 if v := atomic.AddInt64(&r.refCount, speculativeRef); int32(v) == 0 { atomic.AddInt64(&r.refCount, -speculativeRef) return false } v := atomic.AddInt64(&r.refCount, -speculativeRef+1) if FDTableenableLogging { refsvfs2.LogTryIncRef(r, v) } return true } // DecRef implements refs.RefCounter.DecRef. // // Note that speculative references are counted here. Since they were added // prior to real references reaching zero, they will successfully convert to // real references. In other words, we see speculative references only in the // following case: // // A: TryIncRef [speculative increase => sees non-negative references] // B: DecRef [real decrease] // A: TryIncRef [transform speculative to real] // //go:nosplit func (r *FDTableRefs) DecRef(destroy func()) { v := atomic.AddInt64(&r.refCount, -1) if FDTableenableLogging { refsvfs2.LogDecRef(r, v) } switch { case v < 0: panic(fmt.Sprintf("Decrementing non-positive ref count %p, owned by %s", r, r.RefType())) case v == 0: refsvfs2.Unregister(r) if destroy != nil { destroy() } } } func (r *FDTableRefs) afterLoad() { if r.ReadRefs() > 0 { refsvfs2.Register(r) } }