package kernel import ( "runtime" "sync/atomic" "fmt" "gvisor.dev/gvisor/pkg/log" refs_vfs1 "gvisor.dev/gvisor/pkg/refs" ) // ownerType is used to customize logging. Note that we use a pointer to T so // that we do not copy the entire object when passed as a format parameter. var FDTableownerType *FDTable // Refs implements refs.RefCounter. It keeps a reference count using atomic // operations and calls the destructor when the count reaches zero. // // Note that the number of references is actually refCount + 1 so that a default // zero-value Refs object contains one reference. // // TODO(gvisor.dev/issue/1486): Store stack traces when leak check is enabled in // a map with 16-bit hashes, and store the hash in the top 16 bits of refCount. // This will allow us to add stack trace information to the leak messages // without growing the size of Refs. // // +stateify savable type FDTableRefs struct { // refCount is composed of two fields: // // [32-bit speculative references]:[32-bit real references] // // Speculative references are used for TryIncRef, to avoid a CompareAndSwap // loop. See IncRef, DecRef and TryIncRef for details of how these fields are // used. refCount int64 } func (r *FDTableRefs) finalize() { var note string switch refs_vfs1.GetLeakMode() { case refs_vfs1.NoLeakChecking: return case refs_vfs1.UninitializedLeakChecking: note = "(Leak checker uninitialized): " } if n := r.ReadRefs(); n != 0 { log.Warningf("%sRefs %p owned by %T garbage collected with ref count of %d (want 0)", note, r, FDTableownerType, n) } } // EnableLeakCheck checks for reference leaks when Refs gets garbage collected. func (r *FDTableRefs) EnableLeakCheck() { if refs_vfs1.GetLeakMode() != refs_vfs1.NoLeakChecking { runtime.SetFinalizer(r, (*FDTableRefs).finalize) } } // ReadRefs returns the current number of references. The returned count is // inherently racy and is unsafe to use without external synchronization. func (r *FDTableRefs) ReadRefs() int64 { return atomic.LoadInt64(&r.refCount) + 1 } // IncRef implements refs.RefCounter.IncRef. // //go:nosplit func (r *FDTableRefs) IncRef() { if v := atomic.AddInt64(&r.refCount, 1); v <= 0 { panic(fmt.Sprintf("Incrementing non-positive ref count %p owned by %T", r, FDTableownerType)) } } // TryIncRef implements refs.RefCounter.TryIncRef. // // To do this safely without a loop, a speculative reference is first acquired // on the object. This allows multiple concurrent TryIncRef calls to distinguish // other TryIncRef calls from genuine references held. // //go:nosplit func (r *FDTableRefs) TryIncRef() bool { const speculativeRef = 1 << 32 v := atomic.AddInt64(&r.refCount, speculativeRef) if int32(v) < 0 { atomic.AddInt64(&r.refCount, -speculativeRef) return false } atomic.AddInt64(&r.refCount, -speculativeRef+1) return true } // DecRef implements refs.RefCounter.DecRef. // // Note that speculative references are counted here. Since they were added // prior to real references reaching zero, they will successfully convert to // real references. In other words, we see speculative references only in the // following case: // // A: TryIncRef [speculative increase => sees non-negative references] // B: DecRef [real decrease] // A: TryIncRef [transform speculative to real] // //go:nosplit func (r *FDTableRefs) DecRef(destroy func()) { switch v := atomic.AddInt64(&r.refCount, -1); { case v < -1: panic(fmt.Sprintf("Decrementing non-positive ref count %p, owned by %T", r, FDTableownerType)) case v == -1: if destroy != nil { destroy() } } }