// Copyright 2019 The gVisor Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package gofer import ( "sync" "sync/atomic" "gvisor.dev/gvisor/pkg/abi/linux" "gvisor.dev/gvisor/pkg/context" "gvisor.dev/gvisor/pkg/fspath" "gvisor.dev/gvisor/pkg/p9" "gvisor.dev/gvisor/pkg/sentry/fsimpl/host" "gvisor.dev/gvisor/pkg/sentry/kernel" "gvisor.dev/gvisor/pkg/sentry/kernel/auth" "gvisor.dev/gvisor/pkg/sentry/kernel/pipe" "gvisor.dev/gvisor/pkg/sentry/socket/unix/transport" "gvisor.dev/gvisor/pkg/sentry/vfs" "gvisor.dev/gvisor/pkg/syserror" "gvisor.dev/gvisor/pkg/usermem" ) // Sync implements vfs.FilesystemImpl.Sync. func (fs *filesystem) Sync(ctx context.Context) error { // Snapshot current syncable dentries and special files. fs.syncMu.Lock() ds := make([]*dentry, 0, len(fs.syncableDentries)) for d := range fs.syncableDentries { d.IncRef() ds = append(ds, d) } sffds := make([]*specialFileFD, 0, len(fs.specialFileFDs)) for sffd := range fs.specialFileFDs { sffd.vfsfd.IncRef() sffds = append(sffds, sffd) } fs.syncMu.Unlock() // Return the first error we encounter, but sync everything we can // regardless. var retErr error // Sync regular files. for _, d := range ds { err := d.syncSharedHandle(ctx) d.DecRef() if err != nil && retErr == nil { retErr = err } } // Sync special files, which may be writable but do not use dentry shared // handles (so they won't be synced by the above). for _, sffd := range sffds { err := sffd.Sync(ctx) sffd.vfsfd.DecRef() if err != nil && retErr == nil { retErr = err } } return retErr } // maxFilenameLen is the maximum length of a filename. This is dictated by 9P's // encoding of strings, which uses 2 bytes for the length prefix. const maxFilenameLen = (1 << 16) - 1 // dentrySlicePool is a pool of *[]*dentry used to store dentries for which // dentry.checkCachingLocked() must be called. The pool holds pointers to // slices because Go lacks generics, so sync.Pool operates on interface{}, so // every call to (what should be) sync.Pool<[]*dentry>.Put() allocates a copy // of the slice header on the heap. var dentrySlicePool = sync.Pool{ New: func() interface{} { ds := make([]*dentry, 0, 4) // arbitrary non-zero initial capacity return &ds }, } func appendDentry(ds *[]*dentry, d *dentry) *[]*dentry { if ds == nil { ds = dentrySlicePool.Get().(*[]*dentry) } *ds = append(*ds, d) return ds } // Preconditions: ds != nil. func putDentrySlice(ds *[]*dentry) { // Allow dentries to be GC'd. for i := range *ds { (*ds)[i] = nil } *ds = (*ds)[:0] dentrySlicePool.Put(ds) } // stepLocked resolves rp.Component() to an existing file, starting from the // given directory. // // Dentries which may become cached as a result of the traversal are appended // to *ds. // // Preconditions: fs.renameMu must be locked. d.dirMu must be locked. // !rp.Done(). If !d.cachedMetadataAuthoritative(), then d's cached metadata // must be up to date. // // Postconditions: The returned dentry's cached metadata is up to date. func (fs *filesystem) stepLocked(ctx context.Context, rp *vfs.ResolvingPath, d *dentry, mayFollowSymlinks bool, ds **[]*dentry) (*dentry, error) { if !d.isDir() { return nil, syserror.ENOTDIR } if err := d.checkPermissions(rp.Credentials(), vfs.MayExec); err != nil { return nil, err } afterSymlink: name := rp.Component() if name == "." { rp.Advance() return d, nil } if name == ".." { if isRoot, err := rp.CheckRoot(&d.vfsd); err != nil { return nil, err } else if isRoot || d.parent == nil { rp.Advance() return d, nil } // We must assume that d.parent is correct, because if d has been moved // elsewhere in the remote filesystem so that its parent has changed, // we have no way of determining its new parent's location in the // filesystem. // // Call rp.CheckMount() before updating d.parent's metadata, since if // we traverse to another mount then d.parent's metadata is irrelevant. if err := rp.CheckMount(&d.parent.vfsd); err != nil { return nil, err } if d != d.parent && !d.cachedMetadataAuthoritative() { _, attrMask, attr, err := d.parent.file.getAttr(ctx, dentryAttrMask()) if err != nil { return nil, err } d.parent.updateFromP9Attrs(attrMask, &attr) } rp.Advance() return d.parent, nil } child, err := fs.getChildLocked(ctx, rp.VirtualFilesystem(), d, name, ds) if err != nil { return nil, err } if child == nil { return nil, syserror.ENOENT } if err := rp.CheckMount(&child.vfsd); err != nil { return nil, err } if child.isSymlink() && mayFollowSymlinks && rp.ShouldFollowSymlink() { target, err := child.readlink(ctx, rp.Mount()) if err != nil { return nil, err } if err := rp.HandleSymlink(target); err != nil { return nil, err } goto afterSymlink // don't check the current directory again } rp.Advance() return child, nil } // getChildLocked returns a dentry representing the child of parent with the // given name. If no such child exists, getChildLocked returns (nil, nil). // // Preconditions: fs.renameMu must be locked. parent.dirMu must be locked. // parent.isDir(). name is not "." or "..". // // Postconditions: If getChildLocked returns a non-nil dentry, its cached // metadata is up to date. func (fs *filesystem) getChildLocked(ctx context.Context, vfsObj *vfs.VirtualFilesystem, parent *dentry, name string, ds **[]*dentry) (*dentry, error) { if len(name) > maxFilenameLen { return nil, syserror.ENAMETOOLONG } child, ok := parent.children[name] if (ok && fs.opts.interop != InteropModeShared) || parent.isSynthetic() { // Whether child is nil or not, it is cached information that is // assumed to be correct. return child, nil } // We either don't have cached information or need to verify that it's // still correct, either of which requires a remote lookup. Check if this // name is valid before performing the lookup. return fs.revalidateChildLocked(ctx, vfsObj, parent, name, child, ds) } // Preconditions: As for getChildLocked. !parent.isSynthetic(). func (fs *filesystem) revalidateChildLocked(ctx context.Context, vfsObj *vfs.VirtualFilesystem, parent *dentry, name string, child *dentry, ds **[]*dentry) (*dentry, error) { qid, file, attrMask, attr, err := parent.file.walkGetAttrOne(ctx, name) if err != nil && err != syserror.ENOENT { return nil, err } if child != nil { if !file.isNil() && qid.Path == child.ino { // The file at this path hasn't changed. Just update cached // metadata. file.close(ctx) child.updateFromP9Attrs(attrMask, &attr) return child, nil } if file.isNil() && child.isSynthetic() { // We have a synthetic file, and no remote file has arisen to // replace it. return child, nil } // The file at this path has changed or no longer exists. Mark the // dentry invalidated, and re-evaluate its caching status (i.e. if it // has 0 references, drop it). Wait to update parent.children until we // know what to replace the existing dentry with (i.e. one of the // returns below), to avoid a redundant map access. vfsObj.InvalidateDentry(&child.vfsd) if child.isSynthetic() { // Normally we don't mark invalidated dentries as deleted since // they may still exist (but at a different path), and also for // consistency with Linux. However, synthetic files are guaranteed // to become unreachable if their dentries are invalidated, so // treat their invalidation as deletion. child.setDeleted() parent.syntheticChildren-- child.decRefLocked() parent.dirents = nil } *ds = appendDentry(*ds, child) } if file.isNil() { // No file exists at this path now. Cache the negative lookup if // allowed. parent.cacheNegativeLookupLocked(name) return nil, nil } // Create a new dentry representing the file. child, err = fs.newDentry(ctx, file, qid, attrMask, &attr) if err != nil { file.close(ctx) delete(parent.children, name) return nil, err } parent.cacheNewChildLocked(child, name) // For now, child has 0 references, so our caller should call // child.checkCachingLocked(). *ds = appendDentry(*ds, child) return child, nil } // walkParentDirLocked resolves all but the last path component of rp to an // existing directory, starting from the given directory (which is usually // rp.Start().Impl().(*dentry)). It does not check that the returned directory // is searchable by the provider of rp. // // Preconditions: fs.renameMu must be locked. !rp.Done(). If // !d.cachedMetadataAuthoritative(), then d's cached metadata must be up to // date. func (fs *filesystem) walkParentDirLocked(ctx context.Context, rp *vfs.ResolvingPath, d *dentry, ds **[]*dentry) (*dentry, error) { for !rp.Final() { d.dirMu.Lock() next, err := fs.stepLocked(ctx, rp, d, true /* mayFollowSymlinks */, ds) d.dirMu.Unlock() if err != nil { return nil, err } d = next } if !d.isDir() { return nil, syserror.ENOTDIR } return d, nil } // resolveLocked resolves rp to an existing file. // // Preconditions: fs.renameMu must be locked. func (fs *filesystem) resolveLocked(ctx context.Context, rp *vfs.ResolvingPath, ds **[]*dentry) (*dentry, error) { d := rp.Start().Impl().(*dentry) if !d.cachedMetadataAuthoritative() { // Get updated metadata for rp.Start() as required by fs.stepLocked(). if err := d.updateFromGetattr(ctx); err != nil { return nil, err } } for !rp.Done() { d.dirMu.Lock() next, err := fs.stepLocked(ctx, rp, d, true /* mayFollowSymlinks */, ds) d.dirMu.Unlock() if err != nil { return nil, err } d = next } if rp.MustBeDir() && !d.isDir() { return nil, syserror.ENOTDIR } return d, nil } // doCreateAt checks that creating a file at rp is permitted, then invokes // createInRemoteDir (if the parent directory is a real remote directory) or // createInSyntheticDir (if the parent directory is synthetic) to do so. // // Preconditions: !rp.Done(). For the final path component in rp, // !rp.ShouldFollowSymlink(). func (fs *filesystem) doCreateAt(ctx context.Context, rp *vfs.ResolvingPath, dir bool, createInRemoteDir func(parent *dentry, name string) error, createInSyntheticDir func(parent *dentry, name string) error) error { var ds *[]*dentry fs.renameMu.RLock() defer fs.renameMuRUnlockAndCheckCaching(&ds) start := rp.Start().Impl().(*dentry) if !start.cachedMetadataAuthoritative() { // Get updated metadata for start as required by // fs.walkParentDirLocked(). if err := start.updateFromGetattr(ctx); err != nil { return err } } parent, err := fs.walkParentDirLocked(ctx, rp, start, &ds) if err != nil { return err } if err := parent.checkPermissions(rp.Credentials(), vfs.MayWrite|vfs.MayExec); err != nil { return err } name := rp.Component() if name == "." || name == ".." { return syserror.EEXIST } if len(name) > maxFilenameLen { return syserror.ENAMETOOLONG } if !dir && rp.MustBeDir() { return syserror.ENOENT } if parent.isDeleted() { return syserror.ENOENT } mnt := rp.Mount() if err := mnt.CheckBeginWrite(); err != nil { return err } defer mnt.EndWrite() parent.dirMu.Lock() defer parent.dirMu.Unlock() if parent.isSynthetic() { if child := parent.children[name]; child != nil { return syserror.EEXIST } if createInSyntheticDir == nil { return syserror.EPERM } if err := createInSyntheticDir(parent, name); err != nil { return err } parent.touchCMtime() parent.dirents = nil ev := linux.IN_CREATE if dir { ev |= linux.IN_ISDIR } parent.watches.Notify(name, uint32(ev), 0, vfs.InodeEvent, false /* unlinked */) return nil } if fs.opts.interop == InteropModeShared { if child := parent.children[name]; child != nil && child.isSynthetic() { return syserror.EEXIST } // The existence of a non-synthetic dentry at name would be inconclusive // because the file it represents may have been deleted from the remote // filesystem, so we would need to make an RPC to revalidate the dentry. // Just attempt the file creation RPC instead. If a file does exist, the // RPC will fail with EEXIST like we would have. If the RPC succeeds, and a // stale dentry exists, the dentry will fail revalidation next time it's // used. if err := createInRemoteDir(parent, name); err != nil { return err } ev := linux.IN_CREATE if dir { ev |= linux.IN_ISDIR } parent.watches.Notify(name, uint32(ev), 0, vfs.InodeEvent, false /* unlinked */) return nil } if child := parent.children[name]; child != nil { return syserror.EEXIST } // No cached dentry exists; however, there might still be an existing file // at name. As above, we attempt the file creation RPC anyway. if err := createInRemoteDir(parent, name); err != nil { return err } if child, ok := parent.children[name]; ok && child == nil { // Delete the now-stale negative dentry. delete(parent.children, name) } parent.touchCMtime() parent.dirents = nil ev := linux.IN_CREATE if dir { ev |= linux.IN_ISDIR } parent.watches.Notify(name, uint32(ev), 0, vfs.InodeEvent, false /* unlinked */) return nil } // Preconditions: !rp.Done(). func (fs *filesystem) unlinkAt(ctx context.Context, rp *vfs.ResolvingPath, dir bool) error { var ds *[]*dentry fs.renameMu.RLock() defer fs.renameMuRUnlockAndCheckCaching(&ds) start := rp.Start().Impl().(*dentry) if !start.cachedMetadataAuthoritative() { // Get updated metadata for start as required by // fs.walkParentDirLocked(). if err := start.updateFromGetattr(ctx); err != nil { return err } } parent, err := fs.walkParentDirLocked(ctx, rp, start, &ds) if err != nil { return err } if err := parent.checkPermissions(rp.Credentials(), vfs.MayWrite|vfs.MayExec); err != nil { return err } if err := rp.Mount().CheckBeginWrite(); err != nil { return err } defer rp.Mount().EndWrite() name := rp.Component() if dir { if name == "." { return syserror.EINVAL } if name == ".." { return syserror.ENOTEMPTY } } else { if name == "." || name == ".." { return syserror.EISDIR } } vfsObj := rp.VirtualFilesystem() mntns := vfs.MountNamespaceFromContext(ctx) defer mntns.DecRef() parent.dirMu.Lock() defer parent.dirMu.Unlock() child, ok := parent.children[name] if ok && child == nil { return syserror.ENOENT } sticky := atomic.LoadUint32(&parent.mode)&linux.ModeSticky != 0 if sticky { if !ok { // If the sticky bit is set, we need to retrieve the child to determine // whether removing it is allowed. child, err = fs.stepLocked(ctx, rp, parent, false /* mayFollowSymlinks */, &ds) if err != nil { return err } } else if child != nil && !child.cachedMetadataAuthoritative() { // Make sure the dentry representing the file at name is up to date // before examining its metadata. child, err = fs.revalidateChildLocked(ctx, vfsObj, parent, name, child, &ds) if err != nil { return err } } if err := parent.mayDelete(rp.Credentials(), child); err != nil { return err } } // If a child dentry exists, prepare to delete it. This should fail if it is // a mount point. We detect mount points by speculatively calling // PrepareDeleteDentry, which fails if child is a mount point. However, we // may need to revalidate the file in this case to make sure that it has not // been deleted or replaced on the remote fs, in which case the mount point // will have disappeared. If calling PrepareDeleteDentry fails again on the // up-to-date dentry, we can be sure that it is a mount point. // // Also note that if child is nil, then it can't be a mount point. if child != nil { // Hold child.dirMu so we can check child.children and // child.syntheticChildren. We don't access these fields until a bit later, // but locking child.dirMu after calling vfs.PrepareDeleteDentry() would // create an inconsistent lock ordering between dentry.dirMu and // vfs.Dentry.mu (in the VFS lock order, it would make dentry.dirMu both "a // FilesystemImpl lock" and "a lock acquired by a FilesystemImpl between // PrepareDeleteDentry and CommitDeleteDentry). To avoid this, lock // child.dirMu before calling PrepareDeleteDentry. child.dirMu.Lock() defer child.dirMu.Unlock() if err := vfsObj.PrepareDeleteDentry(mntns, &child.vfsd); err != nil { // We can skip revalidation in several cases: // - We are not in InteropModeShared // - The parent directory is synthetic, in which case the child must also // be synthetic // - We already updated the child during the sticky bit check above if parent.cachedMetadataAuthoritative() || sticky { return err } child, err = fs.revalidateChildLocked(ctx, vfsObj, parent, name, child, &ds) if err != nil { return err } if child != nil { if err := vfsObj.PrepareDeleteDentry(mntns, &child.vfsd); err != nil { return err } } } } flags := uint32(0) // If a dentry exists, use it for best-effort checks on its deletability. if dir { if child != nil { // child must be an empty directory. if child.syntheticChildren != 0 { // This is definitely not an empty directory, irrespective of // fs.opts.interop. vfsObj.AbortDeleteDentry(&child.vfsd) return syserror.ENOTEMPTY } // If InteropModeShared is in effect and the first call to // PrepareDeleteDentry above succeeded, then child wasn't // revalidated (so we can't expect its file type to be correct) and // individually revalidating its children (to confirm that they // still exist) would be a waste of time. if child.cachedMetadataAuthoritative() { if !child.isDir() { vfsObj.AbortDeleteDentry(&child.vfsd) return syserror.ENOTDIR } for _, grandchild := range child.children { if grandchild != nil { vfsObj.AbortDeleteDentry(&child.vfsd) return syserror.ENOTEMPTY } } } } flags = linux.AT_REMOVEDIR } else { // child must be a non-directory file. if child != nil && child.isDir() { vfsObj.AbortDeleteDentry(&child.vfsd) return syserror.EISDIR } if rp.MustBeDir() { if child != nil { vfsObj.AbortDeleteDentry(&child.vfsd) } return syserror.ENOTDIR } } if parent.isSynthetic() { if child == nil { return syserror.ENOENT } } else if child == nil || !child.isSynthetic() { err = parent.file.unlinkAt(ctx, name, flags) if err != nil { if child != nil { vfsObj.AbortDeleteDentry(&child.vfsd) } return err } } // Generate inotify events for rmdir or unlink. if dir { parent.watches.Notify(name, linux.IN_DELETE|linux.IN_ISDIR, 0, vfs.InodeEvent, true /* unlinked */) } else { var cw *vfs.Watches if child != nil { cw = &child.watches } vfs.InotifyRemoveChild(cw, &parent.watches, name) } if child != nil { vfsObj.CommitDeleteDentry(&child.vfsd) child.setDeleted() if child.isSynthetic() { parent.syntheticChildren-- child.decRefLocked() } ds = appendDentry(ds, child) } parent.cacheNegativeLookupLocked(name) if parent.cachedMetadataAuthoritative() { parent.dirents = nil parent.touchCMtime() if dir { parent.decLinks() } } return nil } // renameMuRUnlockAndCheckCaching calls fs.renameMu.RUnlock(), then calls // dentry.checkCachingLocked on all dentries in *ds with fs.renameMu locked for // writing. // // ds is a pointer-to-pointer since defer evaluates its arguments immediately, // but dentry slices are allocated lazily, and it's much easier to say "defer // fs.renameMuRUnlockAndCheckCaching(&ds)" than "defer func() { // fs.renameMuRUnlockAndCheckCaching(ds) }()" to work around this. func (fs *filesystem) renameMuRUnlockAndCheckCaching(ds **[]*dentry) { fs.renameMu.RUnlock() if *ds == nil { return } if len(**ds) != 0 { fs.renameMu.Lock() for _, d := range **ds { d.checkCachingLocked() } fs.renameMu.Unlock() } putDentrySlice(*ds) } func (fs *filesystem) renameMuUnlockAndCheckCaching(ds **[]*dentry) { if *ds == nil { fs.renameMu.Unlock() return } for _, d := range **ds { d.checkCachingLocked() } fs.renameMu.Unlock() putDentrySlice(*ds) } // AccessAt implements vfs.Filesystem.Impl.AccessAt. func (fs *filesystem) AccessAt(ctx context.Context, rp *vfs.ResolvingPath, creds *auth.Credentials, ats vfs.AccessTypes) error { var ds *[]*dentry fs.renameMu.RLock() defer fs.renameMuRUnlockAndCheckCaching(&ds) d, err := fs.resolveLocked(ctx, rp, &ds) if err != nil { return err } return d.checkPermissions(creds, ats) } // GetDentryAt implements vfs.FilesystemImpl.GetDentryAt. func (fs *filesystem) GetDentryAt(ctx context.Context, rp *vfs.ResolvingPath, opts vfs.GetDentryOptions) (*vfs.Dentry, error) { var ds *[]*dentry fs.renameMu.RLock() defer fs.renameMuRUnlockAndCheckCaching(&ds) d, err := fs.resolveLocked(ctx, rp, &ds) if err != nil { return nil, err } if opts.CheckSearchable { if !d.isDir() { return nil, syserror.ENOTDIR } if err := d.checkPermissions(rp.Credentials(), vfs.MayExec); err != nil { return nil, err } } d.IncRef() return &d.vfsd, nil } // GetParentDentryAt implements vfs.FilesystemImpl.GetParentDentryAt. func (fs *filesystem) GetParentDentryAt(ctx context.Context, rp *vfs.ResolvingPath) (*vfs.Dentry, error) { var ds *[]*dentry fs.renameMu.RLock() defer fs.renameMuRUnlockAndCheckCaching(&ds) start := rp.Start().Impl().(*dentry) if !start.cachedMetadataAuthoritative() { // Get updated metadata for start as required by // fs.walkParentDirLocked(). if err := start.updateFromGetattr(ctx); err != nil { return nil, err } } d, err := fs.walkParentDirLocked(ctx, rp, start, &ds) if err != nil { return nil, err } d.IncRef() return &d.vfsd, nil } // LinkAt implements vfs.FilesystemImpl.LinkAt. func (fs *filesystem) LinkAt(ctx context.Context, rp *vfs.ResolvingPath, vd vfs.VirtualDentry) error { return fs.doCreateAt(ctx, rp, false /* dir */, func(parent *dentry, childName string) error { if rp.Mount() != vd.Mount() { return syserror.EXDEV } // 9P2000.L supports hard links, but we don't. return syserror.EPERM }, nil) } // MkdirAt implements vfs.FilesystemImpl.MkdirAt. func (fs *filesystem) MkdirAt(ctx context.Context, rp *vfs.ResolvingPath, opts vfs.MkdirOptions) error { creds := rp.Credentials() return fs.doCreateAt(ctx, rp, true /* dir */, func(parent *dentry, name string) error { if _, err := parent.file.mkdir(ctx, name, (p9.FileMode)(opts.Mode), (p9.UID)(creds.EffectiveKUID), (p9.GID)(creds.EffectiveKGID)); err != nil { if !opts.ForSyntheticMountpoint || err == syserror.EEXIST { return err } ctx.Infof("Failed to create remote directory %q: %v; falling back to synthetic directory", name, err) parent.createSyntheticChildLocked(&createSyntheticOpts{ name: name, mode: linux.S_IFDIR | opts.Mode, kuid: creds.EffectiveKUID, kgid: creds.EffectiveKGID, }) } if fs.opts.interop != InteropModeShared { parent.incLinks() } return nil }, func(parent *dentry, name string) error { if !opts.ForSyntheticMountpoint { // Can't create non-synthetic files in synthetic directories. return syserror.EPERM } parent.createSyntheticChildLocked(&createSyntheticOpts{ name: name, mode: linux.S_IFDIR | opts.Mode, kuid: creds.EffectiveKUID, kgid: creds.EffectiveKGID, }) parent.incLinks() return nil }) } // MknodAt implements vfs.FilesystemImpl.MknodAt. func (fs *filesystem) MknodAt(ctx context.Context, rp *vfs.ResolvingPath, opts vfs.MknodOptions) error { return fs.doCreateAt(ctx, rp, false /* dir */, func(parent *dentry, name string) error { creds := rp.Credentials() _, err := parent.file.mknod(ctx, name, (p9.FileMode)(opts.Mode), opts.DevMajor, opts.DevMinor, (p9.UID)(creds.EffectiveKUID), (p9.GID)(creds.EffectiveKGID)) // If the gofer does not allow creating a socket or pipe, create a // synthetic one, i.e. one that is kept entirely in memory. if err == syserror.EPERM { switch opts.Mode.FileType() { case linux.S_IFSOCK: parent.createSyntheticChildLocked(&createSyntheticOpts{ name: name, mode: opts.Mode, kuid: creds.EffectiveKUID, kgid: creds.EffectiveKGID, endpoint: opts.Endpoint, }) return nil case linux.S_IFIFO: parent.createSyntheticChildLocked(&createSyntheticOpts{ name: name, mode: opts.Mode, kuid: creds.EffectiveKUID, kgid: creds.EffectiveKGID, pipe: pipe.NewVFSPipe(true /* isNamed */, pipe.DefaultPipeSize, usermem.PageSize), }) return nil } } return err }, nil) } // OpenAt implements vfs.FilesystemImpl.OpenAt. func (fs *filesystem) OpenAt(ctx context.Context, rp *vfs.ResolvingPath, opts vfs.OpenOptions) (*vfs.FileDescription, error) { // Reject O_TMPFILE, which is not supported; supporting it correctly in the // presence of other remote filesystem users requires remote filesystem // support, and it isn't clear that there's any way to implement this in // 9P. if opts.Flags&linux.O_TMPFILE != 0 { return nil, syserror.EOPNOTSUPP } mayCreate := opts.Flags&linux.O_CREAT != 0 mustCreate := opts.Flags&(linux.O_CREAT|linux.O_EXCL) == (linux.O_CREAT | linux.O_EXCL) var ds *[]*dentry fs.renameMu.RLock() defer fs.renameMuRUnlockAndCheckCaching(&ds) start := rp.Start().Impl().(*dentry) if !start.cachedMetadataAuthoritative() { // Get updated metadata for start as required by fs.stepLocked(). if err := start.updateFromGetattr(ctx); err != nil { return nil, err } } if rp.Done() { return start.openLocked(ctx, rp, &opts) } afterTrailingSymlink: parent, err := fs.walkParentDirLocked(ctx, rp, start, &ds) if err != nil { return nil, err } // Check for search permission in the parent directory. if err := parent.checkPermissions(rp.Credentials(), vfs.MayExec); err != nil { return nil, err } // Determine whether or not we need to create a file. parent.dirMu.Lock() child, err := fs.stepLocked(ctx, rp, parent, false /* mayFollowSymlinks */, &ds) if err == syserror.ENOENT && mayCreate { if parent.isSynthetic() { parent.dirMu.Unlock() return nil, syserror.EPERM } fd, err := parent.createAndOpenChildLocked(ctx, rp, &opts, &ds) parent.dirMu.Unlock() return fd, err } parent.dirMu.Unlock() if err != nil { return nil, err } if mustCreate { return nil, syserror.EEXIST } if !child.isDir() && rp.MustBeDir() { return nil, syserror.ENOTDIR } // Open existing child or follow symlink. if child.isSymlink() && rp.ShouldFollowSymlink() { target, err := child.readlink(ctx, rp.Mount()) if err != nil { return nil, err } if err := rp.HandleSymlink(target); err != nil { return nil, err } start = parent goto afterTrailingSymlink } return child.openLocked(ctx, rp, &opts) } // Preconditions: fs.renameMu must be locked. func (d *dentry) openLocked(ctx context.Context, rp *vfs.ResolvingPath, opts *vfs.OpenOptions) (*vfs.FileDescription, error) { ats := vfs.AccessTypesForOpenFlags(opts) if err := d.checkPermissions(rp.Credentials(), ats); err != nil { return nil, err } trunc := opts.Flags&linux.O_TRUNC != 0 && d.fileType() == linux.S_IFREG if trunc { // Lock metadataMu *while* we open a regular file with O_TRUNC because // open(2) will change the file size on server. d.metadataMu.Lock() defer d.metadataMu.Unlock() } var vfd *vfs.FileDescription var err error mnt := rp.Mount() switch d.fileType() { case linux.S_IFREG: if !d.fs.opts.regularFilesUseSpecialFileFD { if err := d.ensureSharedHandle(ctx, ats&vfs.MayRead != 0, ats&vfs.MayWrite != 0, trunc); err != nil { return nil, err } fd := ®ularFileFD{} fd.LockFD.Init(&d.locks) if err := fd.vfsfd.Init(fd, opts.Flags, mnt, &d.vfsd, &vfs.FileDescriptionOptions{ AllowDirectIO: true, }); err != nil { return nil, err } vfd = &fd.vfsfd } case linux.S_IFDIR: // Can't open directories with O_CREAT. if opts.Flags&linux.O_CREAT != 0 { return nil, syserror.EISDIR } // Can't open directories writably. if ats&vfs.MayWrite != 0 { return nil, syserror.EISDIR } if opts.Flags&linux.O_DIRECT != 0 { return nil, syserror.EINVAL } if !d.isSynthetic() { if err := d.ensureSharedHandle(ctx, ats&vfs.MayRead != 0, false /* write */, false /* trunc */); err != nil { return nil, err } } fd := &directoryFD{} fd.LockFD.Init(&d.locks) if err := fd.vfsfd.Init(fd, opts.Flags, mnt, &d.vfsd, &vfs.FileDescriptionOptions{}); err != nil { return nil, err } return &fd.vfsfd, nil case linux.S_IFLNK: // Can't open symlinks without O_PATH (which is unimplemented). return nil, syserror.ELOOP case linux.S_IFSOCK: if d.isSynthetic() { return nil, syserror.ENXIO } if d.fs.iopts.OpenSocketsByConnecting { return d.connectSocketLocked(ctx, opts) } case linux.S_IFIFO: if d.isSynthetic() { return d.pipe.Open(ctx, mnt, &d.vfsd, opts.Flags, &d.locks) } } if vfd == nil { if vfd, err = d.openSpecialFileLocked(ctx, mnt, opts); err != nil { return nil, err } } if trunc { // If no errors occured so far then update file size in memory. This // step is required even if !d.cachedMetadataAuthoritative() because // d.mappings has to be updated. // d.metadataMu has already been acquired if trunc == true. d.updateFileSizeLocked(0) if d.cachedMetadataAuthoritative() { d.touchCMtimeLocked() } } return vfd, err } func (d *dentry) connectSocketLocked(ctx context.Context, opts *vfs.OpenOptions) (*vfs.FileDescription, error) { if opts.Flags&linux.O_DIRECT != 0 { return nil, syserror.EINVAL } fdObj, err := d.file.connect(ctx, p9.AnonymousSocket) if err != nil { return nil, err } fd, err := host.NewFD(ctx, kernel.KernelFromContext(ctx).HostMount(), fdObj.FD(), &host.NewFDOptions{ HaveFlags: true, Flags: opts.Flags, }) if err != nil { fdObj.Close() return nil, err } fdObj.Release() return fd, nil } func (d *dentry) openSpecialFileLocked(ctx context.Context, mnt *vfs.Mount, opts *vfs.OpenOptions) (*vfs.FileDescription, error) { ats := vfs.AccessTypesForOpenFlags(opts) if opts.Flags&linux.O_DIRECT != 0 { return nil, syserror.EINVAL } // We assume that the server silently inserts O_NONBLOCK in the open flags // for all named pipes (because all existing gofers do this). // // NOTE(b/133875563): This makes named pipe opens racy, because the // mechanisms for translating nonblocking to blocking opens can only detect // the instantaneous presence of a peer holding the other end of the pipe // open, not whether the pipe was *previously* opened by a peer that has // since closed its end. isBlockingOpenOfNamedPipe := d.fileType() == linux.S_IFIFO && opts.Flags&linux.O_NONBLOCK == 0 retry: h, err := openHandle(ctx, d.file, ats.MayRead(), ats.MayWrite(), opts.Flags&linux.O_TRUNC != 0) if err != nil { if isBlockingOpenOfNamedPipe && ats == vfs.MayWrite && err == syserror.ENXIO { // An attempt to open a named pipe with O_WRONLY|O_NONBLOCK fails // with ENXIO if opening the same named pipe with O_WRONLY would // block because there are no readers of the pipe. if err := sleepBetweenNamedPipeOpenChecks(ctx); err != nil { return nil, err } goto retry } return nil, err } if isBlockingOpenOfNamedPipe && ats == vfs.MayRead && h.fd >= 0 { if err := blockUntilNonblockingPipeHasWriter(ctx, h.fd); err != nil { h.close(ctx) return nil, err } } fd, err := newSpecialFileFD(h, mnt, d, &d.locks, opts.Flags) if err != nil { h.close(ctx) return nil, err } return &fd.vfsfd, nil } // Preconditions: d.fs.renameMu must be locked. d.dirMu must be locked. // !d.isSynthetic(). func (d *dentry) createAndOpenChildLocked(ctx context.Context, rp *vfs.ResolvingPath, opts *vfs.OpenOptions, ds **[]*dentry) (*vfs.FileDescription, error) { if err := d.checkPermissions(rp.Credentials(), vfs.MayWrite); err != nil { return nil, err } if d.isDeleted() { return nil, syserror.ENOENT } mnt := rp.Mount() if err := mnt.CheckBeginWrite(); err != nil { return nil, err } defer mnt.EndWrite() // 9P2000.L's lcreate takes a fid representing the parent directory, and // converts it into an open fid representing the created file, so we need // to duplicate the directory fid first. _, dirfile, err := d.file.walk(ctx, nil) if err != nil { return nil, err } creds := rp.Credentials() name := rp.Component() // Filter file creation flags and O_LARGEFILE out; the create RPC already // has the semantics of O_CREAT|O_EXCL, while some servers will choke on // O_LARGEFILE. createFlags := p9.OpenFlags(opts.Flags &^ (vfs.FileCreationFlags | linux.O_LARGEFILE)) fdobj, openFile, createQID, _, err := dirfile.create(ctx, name, createFlags, (p9.FileMode)(opts.Mode), (p9.UID)(creds.EffectiveKUID), (p9.GID)(creds.EffectiveKGID)) if err != nil { dirfile.close(ctx) return nil, err } // Then we need to walk to the file we just created to get a non-open fid // representing it, and to get its metadata. This must use d.file since, as // explained above, dirfile was invalidated by dirfile.Create(). _, nonOpenFile, attrMask, attr, err := d.file.walkGetAttrOne(ctx, name) if err != nil { openFile.close(ctx) if fdobj != nil { fdobj.Close() } return nil, err } // Construct the new dentry. child, err := d.fs.newDentry(ctx, nonOpenFile, createQID, attrMask, &attr) if err != nil { nonOpenFile.close(ctx) openFile.close(ctx) if fdobj != nil { fdobj.Close() } return nil, err } *ds = appendDentry(*ds, child) // Incorporate the fid that was opened by lcreate. useRegularFileFD := child.fileType() == linux.S_IFREG && !d.fs.opts.regularFilesUseSpecialFileFD if useRegularFileFD { child.handleMu.Lock() child.handle.file = openFile if fdobj != nil { child.handle.fd = int32(fdobj.Release()) } child.handleReadable = vfs.MayReadFileWithOpenFlags(opts.Flags) child.handleWritable = vfs.MayWriteFileWithOpenFlags(opts.Flags) child.handleMu.Unlock() } // Insert the dentry into the tree. d.cacheNewChildLocked(child, name) if d.cachedMetadataAuthoritative() { d.touchCMtime() d.dirents = nil } // Finally, construct a file description representing the created file. var childVFSFD *vfs.FileDescription if useRegularFileFD { fd := ®ularFileFD{} fd.LockFD.Init(&child.locks) if err := fd.vfsfd.Init(fd, opts.Flags, mnt, &child.vfsd, &vfs.FileDescriptionOptions{ AllowDirectIO: true, }); err != nil { return nil, err } childVFSFD = &fd.vfsfd } else { h := handle{ file: openFile, fd: -1, } if fdobj != nil { h.fd = int32(fdobj.Release()) } fd, err := newSpecialFileFD(h, mnt, child, &d.locks, opts.Flags) if err != nil { h.close(ctx) return nil, err } childVFSFD = &fd.vfsfd } d.watches.Notify(name, linux.IN_CREATE, 0, vfs.PathEvent, false /* unlinked */) return childVFSFD, nil } // ReadlinkAt implements vfs.FilesystemImpl.ReadlinkAt. func (fs *filesystem) ReadlinkAt(ctx context.Context, rp *vfs.ResolvingPath) (string, error) { var ds *[]*dentry fs.renameMu.RLock() defer fs.renameMuRUnlockAndCheckCaching(&ds) d, err := fs.resolveLocked(ctx, rp, &ds) if err != nil { return "", err } if !d.isSymlink() { return "", syserror.EINVAL } return d.readlink(ctx, rp.Mount()) } // RenameAt implements vfs.FilesystemImpl.RenameAt. func (fs *filesystem) RenameAt(ctx context.Context, rp *vfs.ResolvingPath, oldParentVD vfs.VirtualDentry, oldName string, opts vfs.RenameOptions) error { if opts.Flags != 0 { // Requires 9P support. return syserror.EINVAL } var ds *[]*dentry fs.renameMu.Lock() defer fs.renameMuUnlockAndCheckCaching(&ds) newParent, err := fs.walkParentDirLocked(ctx, rp, rp.Start().Impl().(*dentry), &ds) if err != nil { return err } newName := rp.Component() if newName == "." || newName == ".." { return syserror.EBUSY } mnt := rp.Mount() if mnt != oldParentVD.Mount() { return syserror.EXDEV } if err := mnt.CheckBeginWrite(); err != nil { return err } defer mnt.EndWrite() oldParent := oldParentVD.Dentry().Impl().(*dentry) if !oldParent.cachedMetadataAuthoritative() { if err := oldParent.updateFromGetattr(ctx); err != nil { return err } } creds := rp.Credentials() if err := oldParent.checkPermissions(creds, vfs.MayWrite|vfs.MayExec); err != nil { return err } vfsObj := rp.VirtualFilesystem() // We need a dentry representing the renamed file since, if it's a // directory, we need to check for write permission on it. oldParent.dirMu.Lock() defer oldParent.dirMu.Unlock() renamed, err := fs.getChildLocked(ctx, vfsObj, oldParent, oldName, &ds) if err != nil { return err } if renamed == nil { return syserror.ENOENT } if err := oldParent.mayDelete(creds, renamed); err != nil { return err } if renamed.isDir() { if renamed == newParent || genericIsAncestorDentry(renamed, newParent) { return syserror.EINVAL } if oldParent != newParent { if err := renamed.checkPermissions(creds, vfs.MayWrite); err != nil { return err } } } else { if opts.MustBeDir || rp.MustBeDir() { return syserror.ENOTDIR } } if oldParent != newParent { if err := newParent.checkPermissions(creds, vfs.MayWrite|vfs.MayExec); err != nil { return err } newParent.dirMu.Lock() defer newParent.dirMu.Unlock() } if newParent.isDeleted() { return syserror.ENOENT } replaced, err := fs.getChildLocked(ctx, rp.VirtualFilesystem(), newParent, newName, &ds) if err != nil { return err } var replacedVFSD *vfs.Dentry if replaced != nil { replacedVFSD = &replaced.vfsd if replaced.isDir() { if !renamed.isDir() { return syserror.EISDIR } } else { if rp.MustBeDir() || renamed.isDir() { return syserror.ENOTDIR } } } if oldParent == newParent && oldName == newName { return nil } mntns := vfs.MountNamespaceFromContext(ctx) defer mntns.DecRef() if err := vfsObj.PrepareRenameDentry(mntns, &renamed.vfsd, replacedVFSD); err != nil { return err } // Update the remote filesystem. if !renamed.isSynthetic() { if err := renamed.file.rename(ctx, newParent.file, newName); err != nil { vfsObj.AbortRenameDentry(&renamed.vfsd, replacedVFSD) return err } } else if replaced != nil && !replaced.isSynthetic() { // We are replacing an existing real file with a synthetic one, so we // need to unlink the former. flags := uint32(0) if replaced.isDir() { flags = linux.AT_REMOVEDIR } if err := newParent.file.unlinkAt(ctx, newName, flags); err != nil { vfsObj.AbortRenameDentry(&renamed.vfsd, replacedVFSD) return err } } // Update the dentry tree. vfsObj.CommitRenameReplaceDentry(&renamed.vfsd, replacedVFSD) if replaced != nil { replaced.setDeleted() if replaced.isSynthetic() { newParent.syntheticChildren-- replaced.decRefLocked() } ds = appendDentry(ds, replaced) } oldParent.cacheNegativeLookupLocked(oldName) // We don't use newParent.cacheNewChildLocked() since we don't want to mess // with reference counts and queue oldParent for checkCachingLocked if the // parent isn't actually changing. if oldParent != newParent { ds = appendDentry(ds, oldParent) newParent.IncRef() if renamed.isSynthetic() { oldParent.syntheticChildren-- newParent.syntheticChildren++ } } renamed.parent = newParent renamed.name = newName if newParent.children == nil { newParent.children = make(map[string]*dentry) } newParent.children[newName] = renamed // Update metadata. if renamed.cachedMetadataAuthoritative() { renamed.touchCtime() } if oldParent.cachedMetadataAuthoritative() { oldParent.dirents = nil oldParent.touchCMtime() if renamed.isDir() { oldParent.decLinks() } } if newParent.cachedMetadataAuthoritative() { newParent.dirents = nil newParent.touchCMtime() if renamed.isDir() && (replaced == nil || !replaced.isDir()) { // Increase the link count if we did not replace another directory. newParent.incLinks() } } vfs.InotifyRename(ctx, &renamed.watches, &oldParent.watches, &newParent.watches, oldName, newName, renamed.isDir()) return nil } // RmdirAt implements vfs.FilesystemImpl.RmdirAt. func (fs *filesystem) RmdirAt(ctx context.Context, rp *vfs.ResolvingPath) error { return fs.unlinkAt(ctx, rp, true /* dir */) } // SetStatAt implements vfs.FilesystemImpl.SetStatAt. func (fs *filesystem) SetStatAt(ctx context.Context, rp *vfs.ResolvingPath, opts vfs.SetStatOptions) error { var ds *[]*dentry fs.renameMu.RLock() d, err := fs.resolveLocked(ctx, rp, &ds) if err != nil { fs.renameMuRUnlockAndCheckCaching(&ds) return err } if err := d.setStat(ctx, rp.Credentials(), &opts.Stat, rp.Mount()); err != nil { fs.renameMuRUnlockAndCheckCaching(&ds) return err } fs.renameMuRUnlockAndCheckCaching(&ds) if ev := vfs.InotifyEventFromStatMask(opts.Stat.Mask); ev != 0 { d.InotifyWithParent(ev, 0, vfs.InodeEvent) } return nil } // StatAt implements vfs.FilesystemImpl.StatAt. func (fs *filesystem) StatAt(ctx context.Context, rp *vfs.ResolvingPath, opts vfs.StatOptions) (linux.Statx, error) { var ds *[]*dentry fs.renameMu.RLock() defer fs.renameMuRUnlockAndCheckCaching(&ds) d, err := fs.resolveLocked(ctx, rp, &ds) if err != nil { return linux.Statx{}, err } // Since walking updates metadata for all traversed dentries under // InteropModeShared, including the returned one, we can return cached // metadata here regardless of fs.opts.interop. var stat linux.Statx d.statTo(&stat) return stat, nil } // StatFSAt implements vfs.FilesystemImpl.StatFSAt. func (fs *filesystem) StatFSAt(ctx context.Context, rp *vfs.ResolvingPath) (linux.Statfs, error) { var ds *[]*dentry fs.renameMu.RLock() defer fs.renameMuRUnlockAndCheckCaching(&ds) d, err := fs.resolveLocked(ctx, rp, &ds) if err != nil { return linux.Statfs{}, err } // If d is synthetic, invoke statfs on the first ancestor of d that isn't. for d.isSynthetic() { d = d.parent } fsstat, err := d.file.statFS(ctx) if err != nil { return linux.Statfs{}, err } nameLen := uint64(fsstat.NameLength) if nameLen > maxFilenameLen { nameLen = maxFilenameLen } return linux.Statfs{ // This is primarily for distinguishing a gofer file system in // tests. Testing is important, so instead of defining // something completely random, use a standard value. Type: linux.V9FS_MAGIC, BlockSize: int64(fsstat.BlockSize), Blocks: fsstat.Blocks, BlocksFree: fsstat.BlocksFree, BlocksAvailable: fsstat.BlocksAvailable, Files: fsstat.Files, FilesFree: fsstat.FilesFree, NameLength: nameLen, }, nil } // SymlinkAt implements vfs.FilesystemImpl.SymlinkAt. func (fs *filesystem) SymlinkAt(ctx context.Context, rp *vfs.ResolvingPath, target string) error { return fs.doCreateAt(ctx, rp, false /* dir */, func(parent *dentry, name string) error { creds := rp.Credentials() _, err := parent.file.symlink(ctx, target, name, (p9.UID)(creds.EffectiveKUID), (p9.GID)(creds.EffectiveKGID)) return err }, nil) } // UnlinkAt implements vfs.FilesystemImpl.UnlinkAt. func (fs *filesystem) UnlinkAt(ctx context.Context, rp *vfs.ResolvingPath) error { return fs.unlinkAt(ctx, rp, false /* dir */) } // BoundEndpointAt implements FilesystemImpl.BoundEndpointAt. func (fs *filesystem) BoundEndpointAt(ctx context.Context, rp *vfs.ResolvingPath, opts vfs.BoundEndpointOptions) (transport.BoundEndpoint, error) { var ds *[]*dentry fs.renameMu.RLock() defer fs.renameMuRUnlockAndCheckCaching(&ds) d, err := fs.resolveLocked(ctx, rp, &ds) if err != nil { return nil, err } if err := d.checkPermissions(rp.Credentials(), vfs.MayWrite); err != nil { return nil, err } if d.isSocket() { if !d.isSynthetic() { d.IncRef() return &endpoint{ dentry: d, file: d.file.file, path: opts.Addr, }, nil } return d.endpoint, nil } return nil, syserror.ECONNREFUSED } // ListxattrAt implements vfs.FilesystemImpl.ListxattrAt. func (fs *filesystem) ListxattrAt(ctx context.Context, rp *vfs.ResolvingPath, size uint64) ([]string, error) { var ds *[]*dentry fs.renameMu.RLock() defer fs.renameMuRUnlockAndCheckCaching(&ds) d, err := fs.resolveLocked(ctx, rp, &ds) if err != nil { return nil, err } return d.listxattr(ctx, rp.Credentials(), size) } // GetxattrAt implements vfs.FilesystemImpl.GetxattrAt. func (fs *filesystem) GetxattrAt(ctx context.Context, rp *vfs.ResolvingPath, opts vfs.GetxattrOptions) (string, error) { var ds *[]*dentry fs.renameMu.RLock() defer fs.renameMuRUnlockAndCheckCaching(&ds) d, err := fs.resolveLocked(ctx, rp, &ds) if err != nil { return "", err } return d.getxattr(ctx, rp.Credentials(), &opts) } // SetxattrAt implements vfs.FilesystemImpl.SetxattrAt. func (fs *filesystem) SetxattrAt(ctx context.Context, rp *vfs.ResolvingPath, opts vfs.SetxattrOptions) error { var ds *[]*dentry fs.renameMu.RLock() d, err := fs.resolveLocked(ctx, rp, &ds) if err != nil { fs.renameMuRUnlockAndCheckCaching(&ds) return err } if err := d.setxattr(ctx, rp.Credentials(), &opts); err != nil { fs.renameMuRUnlockAndCheckCaching(&ds) return err } fs.renameMuRUnlockAndCheckCaching(&ds) d.InotifyWithParent(linux.IN_ATTRIB, 0, vfs.InodeEvent) return nil } // RemovexattrAt implements vfs.FilesystemImpl.RemovexattrAt. func (fs *filesystem) RemovexattrAt(ctx context.Context, rp *vfs.ResolvingPath, name string) error { var ds *[]*dentry fs.renameMu.RLock() d, err := fs.resolveLocked(ctx, rp, &ds) if err != nil { fs.renameMuRUnlockAndCheckCaching(&ds) return err } if err := d.removexattr(ctx, rp.Credentials(), name); err != nil { fs.renameMuRUnlockAndCheckCaching(&ds) return err } fs.renameMuRUnlockAndCheckCaching(&ds) d.InotifyWithParent(linux.IN_ATTRIB, 0, vfs.InodeEvent) return nil } // PrependPath implements vfs.FilesystemImpl.PrependPath. func (fs *filesystem) PrependPath(ctx context.Context, vfsroot, vd vfs.VirtualDentry, b *fspath.Builder) error { fs.renameMu.RLock() defer fs.renameMu.RUnlock() return genericPrependPath(vfsroot, vd.Mount(), vd.Dentry().Impl().(*dentry), b) }