// Copyright 2020 The gVisor Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Package eventfd implements event fds. package eventfd import ( "math" "sync" "syscall" "gvisor.dev/gvisor/pkg/abi/linux" "gvisor.dev/gvisor/pkg/context" "gvisor.dev/gvisor/pkg/fdnotifier" "gvisor.dev/gvisor/pkg/log" "gvisor.dev/gvisor/pkg/sentry/vfs" "gvisor.dev/gvisor/pkg/syserror" "gvisor.dev/gvisor/pkg/usermem" "gvisor.dev/gvisor/pkg/waiter" ) // EventFileDescription implements FileDescriptionImpl for file-based event // notification (eventfd). Eventfds are usually internal to the Sentry but in // certain situations they may be converted into a host-backed eventfd. type EventFileDescription struct { vfsfd vfs.FileDescription vfs.FileDescriptionDefaultImpl vfs.DentryMetadataFileDescriptionImpl vfs.NoLockFD // queue is used to notify interested parties when the event object // becomes readable or writable. queue waiter.Queue `state:"zerovalue"` // mu protects the fields below. mu sync.Mutex `state:"nosave"` // val is the current value of the event counter. val uint64 // semMode specifies whether the event is in "semaphore" mode. semMode bool // hostfd indicates whether this eventfd is passed through to the host. hostfd int } var _ vfs.FileDescriptionImpl = (*EventFileDescription)(nil) // New creates a new event fd. func New(vfsObj *vfs.VirtualFilesystem, initVal uint64, semMode bool, flags uint32) (*vfs.FileDescription, error) { vd := vfsObj.NewAnonVirtualDentry("[eventfd]") defer vd.DecRef() efd := &EventFileDescription{ val: initVal, semMode: semMode, hostfd: -1, } if err := efd.vfsfd.Init(efd, flags, vd.Mount(), vd.Dentry(), &vfs.FileDescriptionOptions{ UseDentryMetadata: true, DenyPRead: true, DenyPWrite: true, }); err != nil { return nil, err } return &efd.vfsfd, nil } // HostFD returns the host eventfd associated with this event. func (efd *EventFileDescription) HostFD() (int, error) { efd.mu.Lock() defer efd.mu.Unlock() if efd.hostfd >= 0 { return efd.hostfd, nil } flags := linux.EFD_NONBLOCK if efd.semMode { flags |= linux.EFD_SEMAPHORE } fd, _, errno := syscall.Syscall(syscall.SYS_EVENTFD2, uintptr(efd.val), uintptr(flags), 0) if errno != 0 { return -1, errno } if err := fdnotifier.AddFD(int32(fd), &efd.queue); err != nil { if closeErr := syscall.Close(int(fd)); closeErr != nil { log.Warningf("close(%d) eventfd failed: %v", fd, closeErr) } return -1, err } efd.hostfd = int(fd) return efd.hostfd, nil } // Release implements FileDescriptionImpl.Release() func (efd *EventFileDescription) Release() { efd.mu.Lock() defer efd.mu.Unlock() if efd.hostfd >= 0 { fdnotifier.RemoveFD(int32(efd.hostfd)) if closeErr := syscall.Close(int(efd.hostfd)); closeErr != nil { log.Warningf("close(%d) eventfd failed: %v", efd.hostfd, closeErr) } efd.hostfd = -1 } } // Read implements FileDescriptionImpl.Read. func (efd *EventFileDescription) Read(ctx context.Context, dst usermem.IOSequence, _ vfs.ReadOptions) (int64, error) { if dst.NumBytes() < 8 { return 0, syscall.EINVAL } if err := efd.read(ctx, dst); err != nil { return 0, err } return 8, nil } // Write implements FileDescriptionImpl.Write. func (efd *EventFileDescription) Write(ctx context.Context, src usermem.IOSequence, _ vfs.WriteOptions) (int64, error) { if src.NumBytes() < 8 { return 0, syscall.EINVAL } if err := efd.write(ctx, src); err != nil { return 0, err } return 8, nil } // Preconditions: Must be called with efd.mu locked. func (efd *EventFileDescription) hostReadLocked(ctx context.Context, dst usermem.IOSequence) error { var buf [8]byte if _, err := syscall.Read(efd.hostfd, buf[:]); err != nil { if err == syscall.EWOULDBLOCK { return syserror.ErrWouldBlock } return err } _, err := dst.CopyOut(ctx, buf[:]) return err } func (efd *EventFileDescription) read(ctx context.Context, dst usermem.IOSequence) error { efd.mu.Lock() if efd.hostfd >= 0 { defer efd.mu.Unlock() return efd.hostReadLocked(ctx, dst) } // We can't complete the read if the value is currently zero. if efd.val == 0 { efd.mu.Unlock() return syserror.ErrWouldBlock } // Update the value based on the mode the event is operating in. var val uint64 if efd.semMode { val = 1 // Consistent with Linux, this is done even if writing to memory fails. efd.val-- } else { val = efd.val efd.val = 0 } efd.mu.Unlock() // Notify writers. We do this even if we were already writable because // it is possible that a writer is waiting to write the maximum value // to the event. efd.queue.Notify(waiter.EventOut) var buf [8]byte usermem.ByteOrder.PutUint64(buf[:], val) _, err := dst.CopyOut(ctx, buf[:]) return err } // Preconditions: Must be called with efd.mu locked. func (efd *EventFileDescription) hostWriteLocked(val uint64) error { var buf [8]byte usermem.ByteOrder.PutUint64(buf[:], val) _, err := syscall.Write(efd.hostfd, buf[:]) if err == syscall.EWOULDBLOCK { return syserror.ErrWouldBlock } return err } func (efd *EventFileDescription) write(ctx context.Context, src usermem.IOSequence) error { var buf [8]byte if _, err := src.CopyIn(ctx, buf[:]); err != nil { return err } val := usermem.ByteOrder.Uint64(buf[:]) return efd.Signal(val) } // Signal is an internal function to signal the event fd. func (efd *EventFileDescription) Signal(val uint64) error { if val == math.MaxUint64 { return syscall.EINVAL } efd.mu.Lock() if efd.hostfd >= 0 { defer efd.mu.Unlock() return efd.hostWriteLocked(val) } // We only allow writes that won't cause the value to go over the max // uint64 minus 1. if val > math.MaxUint64-1-efd.val { efd.mu.Unlock() return syserror.ErrWouldBlock } efd.val += val efd.mu.Unlock() // Always trigger a notification. efd.queue.Notify(waiter.EventIn) return nil } // Readiness implements waiter.Waitable.Readiness. func (efd *EventFileDescription) Readiness(mask waiter.EventMask) waiter.EventMask { efd.mu.Lock() defer efd.mu.Unlock() if efd.hostfd >= 0 { return fdnotifier.NonBlockingPoll(int32(efd.hostfd), mask) } ready := waiter.EventMask(0) if efd.val > 0 { ready |= waiter.EventIn } if efd.val < math.MaxUint64-1 { ready |= waiter.EventOut } return mask & ready } // EventRegister implements waiter.Waitable.EventRegister. func (efd *EventFileDescription) EventRegister(entry *waiter.Entry, mask waiter.EventMask) { efd.queue.EventRegister(entry, mask) efd.mu.Lock() defer efd.mu.Unlock() if efd.hostfd >= 0 { fdnotifier.UpdateFD(int32(efd.hostfd)) } } // EventUnregister implements waiter.Waitable.EventUnregister. func (efd *EventFileDescription) EventUnregister(entry *waiter.Entry) { efd.queue.EventUnregister(entry) efd.mu.Lock() defer efd.mu.Unlock() if efd.hostfd >= 0 { fdnotifier.UpdateFD(int32(efd.hostfd)) } }