// Copyright 2018 Google Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Package seccomp provides basic seccomp filters. package seccomp import ( "fmt" "sort" "gvisor.googlesource.com/gvisor/pkg/abi/linux" "gvisor.googlesource.com/gvisor/pkg/bpf" "gvisor.googlesource.com/gvisor/pkg/log" ) const ( // violationLabel is added to the program to take action on a violation. violationLabel = "violation" // allowLabel is added to the program to allow the syscall to take place. allowLabel = "allow" ) // Install generates BPF code based on the set of syscalls provided. It only // allows syscalls that conform to the specification (*) and generates SIGSYS // trap unless kill is set. // // (*) The current implementation only checks the syscall number. It does NOT // validate any of the arguments. func Install(syscalls []uintptr, kill bool) error { // Sort syscalls and remove duplicates to build the BST. sort.Slice(syscalls, func(i, j int) bool { return syscalls[i] < syscalls[j] }) syscalls = filterUnique(syscalls) log.Infof("Installing seccomp filters for %d syscalls (kill=%t)", len(syscalls), kill) for _, s := range syscalls { log.Infof("syscall filter: %v", s) } instrs, err := buildProgram(syscalls, kill) if err != nil { return err } if log.IsLogging(log.Debug) { programStr, err := bpf.DecodeProgram(instrs) if err != nil { programStr = fmt.Sprintf("Error: %v\n%s", err, programStr) } log.Debugf("Seccomp program dump:\n%s", programStr) } if err := seccomp(instrs); err != nil { return err } log.Infof("Seccomp filters installed.") return nil } // buildProgram builds a BPF program that whitelists all given syscalls. // // Precondition: syscalls must be sorted and unique. func buildProgram(syscalls []uintptr, kill bool) ([]linux.BPFInstruction, error) { const archOffset = 4 // offsetof(seccomp_data, arch) program := bpf.NewProgramBuilder() violationAction := uint32(linux.SECCOMP_RET_KILL) if !kill { violationAction = linux.SECCOMP_RET_TRAP } // Be paranoid and check that syscall is done in the expected architecture. // // A = seccomp_data.arch // if (A != AUDIT_ARCH_X86_64) goto violation program.AddStmt(bpf.Ld|bpf.Abs|bpf.W, archOffset) program.AddJumpFalseLabel(bpf.Jmp|bpf.Jeq|bpf.K, linux.AUDIT_ARCH_X86_64, 0, violationLabel) if err := buildIndex(syscalls, program); err != nil { return nil, err } // violation: return violationAction if err := program.AddLabel(violationLabel); err != nil { return nil, err } program.AddStmt(bpf.Ret|bpf.K, violationAction) // allow: return SECCOMP_RET_ALLOW if err := program.AddLabel(allowLabel); err != nil { return nil, err } program.AddStmt(bpf.Ret|bpf.K, linux.SECCOMP_RET_ALLOW) return program.Instructions() } // filterUnique filters unique system calls. // // Precondition: syscalls must be sorted. func filterUnique(syscalls []uintptr) []uintptr { filtered := make([]uintptr, 0, len(syscalls)) for i := 0; i < len(syscalls); i++ { if len(filtered) > 0 && syscalls[i] == filtered[len(filtered)-1] { // This call has already been inserted, skip. continue } filtered = append(filtered, syscalls[i]) } return filtered } // buildIndex builds a BST to quickly search through all syscalls that are whitelisted. // // Precondition: syscalls must be sorted and unique. func buildIndex(syscalls []uintptr, program *bpf.ProgramBuilder) error { root := createBST(syscalls) // Load syscall number into A and run through BST. // // A = seccomp_data.nr program.AddStmt(bpf.Ld|bpf.Abs|bpf.W, 0) return root.buildBSTProgram(program, true) } // createBST converts sorted syscall slice into a balanced BST. // Panics if syscalls is empty. func createBST(syscalls []uintptr) *node { i := len(syscalls) / 2 parent := node{value: syscalls[i]} if i > 0 { parent.left = createBST(syscalls[:i]) } if i+1 < len(syscalls) { parent.right = createBST(syscalls[i+1:]) } return &parent } // node represents a tree node. type node struct { value uintptr left *node right *node } // label returns the label corresponding to this node. If node is nil (syscall not present), // violationLabel is returned for convenience. func (n *node) label() string { if n == nil { return violationLabel } return fmt.Sprintf("index_%v", n.value) } // buildBSTProgram converts a binary tree started in 'root' into BPF code. The ouline of the code // is as follows: // // // SYS_PIPE(22), root // (A == 22) ? goto allow : continue // (A > 22) ? goto index_35 : goto index_9 // // index_9: // SYS_MMAP(9), leaf // (A == 9) ? goto allow : goto violation // // index_35: // SYS_NANOSLEEP(35), single child // (A == 35) ? goto allow : continue // (A > 35) ? goto index_50 : goto violation // // index_50: // SYS_LISTEN(50), leaf // (A == 50) ? goto allow : goto violation // func (n *node) buildBSTProgram(program *bpf.ProgramBuilder, root bool) error { if n == nil { return nil } // Root node is never referenced by label, skip it. if !root { if err := program.AddLabel(n.label()); err != nil { return err } } // Leaf nodes don't require extra check, they either allow or violate! if n.left == nil && n.right == nil { program.AddJumpLabels(bpf.Jmp|bpf.Jeq|bpf.K, uint32(n.value), allowLabel, violationLabel) return nil } // Non-leaf node. Allows syscall if it matches, check which turn to take otherwise. Note // that 'violationLabel' is returned for nil children. program.AddJumpTrueLabel(bpf.Jmp|bpf.Jeq|bpf.K, uint32(n.value), allowLabel, 0) program.AddJumpLabels(bpf.Jmp|bpf.Jgt|bpf.K, uint32(n.value), n.right.label(), n.left.label()) if err := n.left.buildBSTProgram(program, false); err != nil { return err } return n.right.buildBSTProgram(program, false) }