//go:build arm64 && arm64 && arm64 // +build arm64,arm64,arm64 package ring0 import ( "fmt" "gvisor.dev/gvisor/pkg/hostarch" "gvisor.dev/gvisor/pkg/ring0/pagetables" "gvisor.dev/gvisor/pkg/sentry/arch" "gvisor.dev/gvisor/pkg/sentry/arch/fpu" "io" "reflect" ) // Useful bits. const ( _PGD_PGT_BASE = 0x1000 _PGD_PGT_SIZE = 0x1000 _PUD_PGT_BASE = 0x2000 _PUD_PGT_SIZE = 0x1000 _PMD_PGT_BASE = 0x3000 _PMD_PGT_SIZE = 0x4000 _PTE_PGT_BASE = 0x7000 _PTE_PGT_SIZE = 0x1000 ) const ( // DAIF bits:debug, sError, IRQ, FIQ. _PSR_D_BIT = 0x00000200 _PSR_A_BIT = 0x00000100 _PSR_I_BIT = 0x00000080 _PSR_F_BIT = 0x00000040 _PSR_DAIF_SHIFT = 6 _PSR_DAIF_MASK = 0xf << _PSR_DAIF_SHIFT // PSR bits. _PSR_MODE_EL0t = 0x00000000 _PSR_MODE_EL1t = 0x00000004 _PSR_MODE_EL1h = 0x00000005 _PSR_MODE_MASK = 0x0000000f PsrFlagsClear = _PSR_MODE_MASK | _PSR_DAIF_MASK PsrModeMask = _PSR_MODE_MASK // KernelFlagsSet should always be set in the kernel. KernelFlagsSet = _PSR_MODE_EL1h | _PSR_D_BIT | _PSR_A_BIT | _PSR_I_BIT | _PSR_F_BIT // UserFlagsSet are always set in userspace. UserFlagsSet = _PSR_MODE_EL0t ) // Vector is an exception vector. type Vector uintptr // Exception vectors. const ( El1InvSync = iota El1InvIrq El1InvFiq El1InvError El1Sync El1Irq El1Fiq El1Err El0Sync El0Irq El0Fiq El0Err El0InvSync El0InvIrq El0InvFiq El0InvErr El1SyncDa El1SyncIa El1SyncSpPc El1SyncUndef El1SyncDbg El1SyncInv El0SyncSVC El0SyncDa El0SyncIa El0SyncFpsimdAcc El0SyncSveAcc El0SyncFpsimdExc El0SyncSys El0SyncSpPc El0SyncUndef El0SyncDbg El0SyncWfx El0SyncInv El0ErrNMI El0ErrBounce _NR_INTERRUPTS ) // System call vectors. const ( Syscall Vector = El0SyncSVC PageFault Vector = El0SyncDa VirtualizationException Vector = El0ErrBounce ) // VirtualAddressBits returns the number bits available for virtual addresses. func VirtualAddressBits() uint32 { return 48 } // PhysicalAddressBits returns the number of bits available for physical addresses. func PhysicalAddressBits() uint32 { return 40 } // Kernel is a global kernel object. // // This contains global state, shared by multiple CPUs. type Kernel struct { // PageTables are the kernel pagetables; this must be provided. PageTables *pagetables.PageTables KernelArchState } // Hooks are hooks for kernel functions. type Hooks interface { // KernelSyscall is called for kernel system calls. // // Return from this call will restore registers and return to the kernel: the // registers must be modified directly. // // If this function is not provided, a kernel exception results in halt. // // This must be go:nosplit, as this will be on the interrupt stack. // Closures are permitted, as the pointer to the closure frame is not // passed on the stack. KernelSyscall() // KernelException handles an exception during kernel execution. // // Return from this call will restore registers and return to the kernel: the // registers must be modified directly. // // If this function is not provided, a kernel exception results in halt. // // This must be go:nosplit, as this will be on the interrupt stack. // Closures are permitted, as the pointer to the closure frame is not // passed on the stack. KernelException(Vector) } // CPU is the per-CPU struct. type CPU struct { // self is a self reference. // // This is always guaranteed to be at offset zero. self *CPU // kernel is reference to the kernel that this CPU was initialized // with. This reference is kept for garbage collection purposes: CPU // registers may refer to objects within the Kernel object that cannot // be safely freed. kernel *Kernel // CPUArchState is architecture-specific state. CPUArchState // registers is a set of registers; these may be used on kernel system // calls and exceptions via the Registers function. registers arch.Registers // floatingPointState holds floating point state. floatingPointState fpu.State // hooks are kernel hooks. hooks Hooks } // Registers returns a modifiable-copy of the kernel registers. // // This is explicitly safe to call during KernelException and KernelSyscall. // //go:nosplit func (c *CPU) Registers() *arch.Registers { return &c.registers } // FloatingPointState returns the kernel floating point state. // // This is explicitly safe to call during KernelException and KernelSyscall. // //go:nosplit func (c *CPU) FloatingPointState() *fpu.State { return &c.floatingPointState } // SwitchOpts are passed to the Switch function. type SwitchOpts struct { // Registers are the user register state. Registers *arch.Registers // FloatingPointState is a byte pointer where floating point state is // saved and restored. FloatingPointState *fpu.State // PageTables are the application page tables. PageTables *pagetables.PageTables // Flush indicates that a TLB flush should be forced on switch. Flush bool // FullRestore indicates that an iret-based restore should be used. FullRestore bool // SwitchArchOpts are architecture-specific options. SwitchArchOpts } var ( // UserspaceSize is the total size of userspace. UserspaceSize = uintptr(1) << (VirtualAddressBits()) // MaximumUserAddress is the largest possible user address. MaximumUserAddress = (UserspaceSize - 1) & ^uintptr(hostarch.PageSize-1) // KernelStartAddress is the starting kernel address. KernelStartAddress = ^uintptr(0) - (UserspaceSize - 1) ) // KernelArchState contains architecture-specific state. type KernelArchState struct { } // CPUArchState contains CPU-specific arch state. type CPUArchState struct { // stack is the stack used for interrupts on this CPU. stack [128]byte // errorCode is the error code from the last exception. errorCode uintptr // errorType indicates the type of error code here, it is always set // along with the errorCode value above. // // It will either by 1, which indicates a user error, or 0 indicating a // kernel error. If the error code below returns false (kernel error), // then it cannot provide relevant information about the last // exception. errorType uintptr // faultAddr is the value of far_el1. faultAddr uintptr // el0Fp is the address of application's fpstate. el0Fp uintptr // ttbr0Kvm is the value of ttbr0_el1 for sentry. ttbr0Kvm uintptr // ttbr0App is the value of ttbr0_el1 for applicaton. ttbr0App uintptr // exception vector. vecCode Vector // application context pointer. appAddr uintptr // lazyVFP is the value of cpacr_el1. lazyVFP uintptr // appASID is the asid value of guest application. appASID uintptr } // ErrorCode returns the last error code. // // The returned boolean indicates whether the error code corresponds to the // last user error or not. If it does not, then fault information must be // ignored. This is generally the result of a kernel fault while servicing a // user fault. // //go:nosplit func (c *CPU) ErrorCode() (value uintptr, user bool) { return c.errorCode, c.errorType != 0 } // ClearErrorCode resets the error code. // //go:nosplit func (c *CPU) ClearErrorCode() { c.errorCode = 0 c.errorType = 1 } //go:nosplit func (c *CPU) GetFaultAddr() (value uintptr) { return c.faultAddr } //go:nosplit func (c *CPU) SetTtbr0Kvm(value uintptr) { c.ttbr0Kvm = value } //go:nosplit func (c *CPU) SetTtbr0App(value uintptr) { c.ttbr0App = value } //go:nosplit func (c *CPU) GetVector() (value Vector) { return c.vecCode } //go:nosplit func (c *CPU) SetAppAddr(value uintptr) { c.appAddr = value } // GetLazyVFP returns the value of cpacr_el1. //go:nosplit func (c *CPU) GetLazyVFP() (value uintptr) { return c.lazyVFP } // SwitchArchOpts are embedded in SwitchOpts. type SwitchArchOpts struct { // UserASID indicates that the application ASID to be used on switch, UserASID uint16 // KernelASID indicates that the kernel ASID to be used on return, KernelASID uint16 } func init() { } // Emit prints architecture-specific offsets. func Emit(w io.Writer) { fmt.Fprintf(w, "// Automatically generated, do not edit.\n") c := &CPU{} fmt.Fprintf(w, "\n// CPU offsets.\n") fmt.Fprintf(w, "#define CPU_SELF 0x%02x\n", reflect.ValueOf(&c.self).Pointer()-reflect.ValueOf(c).Pointer()) fmt.Fprintf(w, "#define CPU_REGISTERS 0x%02x\n", reflect.ValueOf(&c.registers).Pointer()-reflect.ValueOf(c).Pointer()) fmt.Fprintf(w, "#define CPU_STACK_TOP 0x%02x\n", reflect.ValueOf(&c.stack[0]).Pointer()-reflect.ValueOf(c).Pointer()+uintptr(len(c.stack))) fmt.Fprintf(w, "#define CPU_ERROR_CODE 0x%02x\n", reflect.ValueOf(&c.errorCode).Pointer()-reflect.ValueOf(c).Pointer()) fmt.Fprintf(w, "#define CPU_ERROR_TYPE 0x%02x\n", reflect.ValueOf(&c.errorType).Pointer()-reflect.ValueOf(c).Pointer()) fmt.Fprintf(w, "#define CPU_FAULT_ADDR 0x%02x\n", reflect.ValueOf(&c.faultAddr).Pointer()-reflect.ValueOf(c).Pointer()) fmt.Fprintf(w, "#define CPU_FPSTATE_EL0 0x%02x\n", reflect.ValueOf(&c.el0Fp).Pointer()-reflect.ValueOf(c).Pointer()) fmt.Fprintf(w, "#define CPU_TTBR0_KVM 0x%02x\n", reflect.ValueOf(&c.ttbr0Kvm).Pointer()-reflect.ValueOf(c).Pointer()) fmt.Fprintf(w, "#define CPU_TTBR0_APP 0x%02x\n", reflect.ValueOf(&c.ttbr0App).Pointer()-reflect.ValueOf(c).Pointer()) fmt.Fprintf(w, "#define CPU_VECTOR_CODE 0x%02x\n", reflect.ValueOf(&c.vecCode).Pointer()-reflect.ValueOf(c).Pointer()) fmt.Fprintf(w, "#define CPU_APP_ADDR 0x%02x\n", reflect.ValueOf(&c.appAddr).Pointer()-reflect.ValueOf(c).Pointer()) fmt.Fprintf(w, "#define CPU_LAZY_VFP 0x%02x\n", reflect.ValueOf(&c.lazyVFP).Pointer()-reflect.ValueOf(c).Pointer()) fmt.Fprintf(w, "#define CPU_APP_ASID 0x%02x\n", reflect.ValueOf(&c.appASID).Pointer()-reflect.ValueOf(c).Pointer()) fmt.Fprintf(w, "\n// Bits.\n") fmt.Fprintf(w, "#define _KERNEL_FLAGS 0x%02x\n", KernelFlagsSet) fmt.Fprintf(w, "\n// Vectors.\n") fmt.Fprintf(w, "#define El1Sync 0x%02x\n", El1Sync) fmt.Fprintf(w, "#define El1Irq 0x%02x\n", El1Irq) fmt.Fprintf(w, "#define El1Fiq 0x%02x\n", El1Fiq) fmt.Fprintf(w, "#define El1Err 0x%02x\n", El1Err) fmt.Fprintf(w, "#define El0Sync 0x%02x\n", El0Sync) fmt.Fprintf(w, "#define El0Irq 0x%02x\n", El0Irq) fmt.Fprintf(w, "#define El0Fiq 0x%02x\n", El0Fiq) fmt.Fprintf(w, "#define El0Err 0x%02x\n", El0Err) fmt.Fprintf(w, "#define El1SyncDa 0x%02x\n", El1SyncDa) fmt.Fprintf(w, "#define El1SyncIa 0x%02x\n", El1SyncIa) fmt.Fprintf(w, "#define El1SyncSpPc 0x%02x\n", El1SyncSpPc) fmt.Fprintf(w, "#define El1SyncUndef 0x%02x\n", El1SyncUndef) fmt.Fprintf(w, "#define El1SyncDbg 0x%02x\n", El1SyncDbg) fmt.Fprintf(w, "#define El1SyncInv 0x%02x\n", El1SyncInv) fmt.Fprintf(w, "#define El0SyncSVC 0x%02x\n", El0SyncSVC) fmt.Fprintf(w, "#define El0SyncDa 0x%02x\n", El0SyncDa) fmt.Fprintf(w, "#define El0SyncIa 0x%02x\n", El0SyncIa) fmt.Fprintf(w, "#define El0SyncFpsimdAcc 0x%02x\n", El0SyncFpsimdAcc) fmt.Fprintf(w, "#define El0SyncSveAcc 0x%02x\n", El0SyncSveAcc) fmt.Fprintf(w, "#define El0SyncFpsimdExc 0x%02x\n", El0SyncFpsimdExc) fmt.Fprintf(w, "#define El0SyncSys 0x%02x\n", El0SyncSys) fmt.Fprintf(w, "#define El0SyncSpPc 0x%02x\n", El0SyncSpPc) fmt.Fprintf(w, "#define El0SyncUndef 0x%02x\n", El0SyncUndef) fmt.Fprintf(w, "#define El0SyncDbg 0x%02x\n", El0SyncDbg) fmt.Fprintf(w, "#define El0SyncWfx 0x%02x\n", El0SyncWfx) fmt.Fprintf(w, "#define El0SyncInv 0x%02x\n", El0SyncInv) fmt.Fprintf(w, "#define El0ErrNMI 0x%02x\n", El0ErrNMI) fmt.Fprintf(w, "#define PageFault 0x%02x\n", PageFault) fmt.Fprintf(w, "#define Syscall 0x%02x\n", Syscall) fmt.Fprintf(w, "#define VirtualizationException 0x%02x\n", VirtualizationException) p := &arch.Registers{} fmt.Fprintf(w, "\n// Ptrace registers.\n") fmt.Fprintf(w, "#define PTRACE_R0 0x%02x\n", reflect.ValueOf(&p.Regs[0]).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_R1 0x%02x\n", reflect.ValueOf(&p.Regs[1]).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_R2 0x%02x\n", reflect.ValueOf(&p.Regs[2]).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_R3 0x%02x\n", reflect.ValueOf(&p.Regs[3]).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_R4 0x%02x\n", reflect.ValueOf(&p.Regs[4]).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_R5 0x%02x\n", reflect.ValueOf(&p.Regs[5]).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_R6 0x%02x\n", reflect.ValueOf(&p.Regs[6]).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_R7 0x%02x\n", reflect.ValueOf(&p.Regs[7]).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_R8 0x%02x\n", reflect.ValueOf(&p.Regs[8]).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_R9 0x%02x\n", reflect.ValueOf(&p.Regs[9]).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_R10 0x%02x\n", reflect.ValueOf(&p.Regs[10]).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_R11 0x%02x\n", reflect.ValueOf(&p.Regs[11]).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_R12 0x%02x\n", reflect.ValueOf(&p.Regs[12]).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_R13 0x%02x\n", reflect.ValueOf(&p.Regs[13]).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_R14 0x%02x\n", reflect.ValueOf(&p.Regs[14]).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_R15 0x%02x\n", reflect.ValueOf(&p.Regs[15]).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_R16 0x%02x\n", reflect.ValueOf(&p.Regs[16]).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_R17 0x%02x\n", reflect.ValueOf(&p.Regs[17]).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_R18 0x%02x\n", reflect.ValueOf(&p.Regs[18]).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_R19 0x%02x\n", reflect.ValueOf(&p.Regs[19]).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_R20 0x%02x\n", reflect.ValueOf(&p.Regs[20]).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_R21 0x%02x\n", reflect.ValueOf(&p.Regs[21]).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_R22 0x%02x\n", reflect.ValueOf(&p.Regs[22]).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_R23 0x%02x\n", reflect.ValueOf(&p.Regs[23]).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_R24 0x%02x\n", reflect.ValueOf(&p.Regs[24]).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_R25 0x%02x\n", reflect.ValueOf(&p.Regs[25]).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_R26 0x%02x\n", reflect.ValueOf(&p.Regs[26]).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_R27 0x%02x\n", reflect.ValueOf(&p.Regs[27]).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_R28 0x%02x\n", reflect.ValueOf(&p.Regs[28]).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_R29 0x%02x\n", reflect.ValueOf(&p.Regs[29]).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_R30 0x%02x\n", reflect.ValueOf(&p.Regs[30]).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_SP 0x%02x\n", reflect.ValueOf(&p.Sp).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_PC 0x%02x\n", reflect.ValueOf(&p.Pc).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_PSTATE 0x%02x\n", reflect.ValueOf(&p.Pstate).Pointer()-reflect.ValueOf(p).Pointer()) fmt.Fprintf(w, "#define PTRACE_TLS 0x%02x\n", reflect.ValueOf(&p.TPIDR_EL0).Pointer()-reflect.ValueOf(p).Pointer()) }