// Copyright 2020 The gVisor Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Package merkletree implements Merkle tree generating and verification. package merkletree import ( "bytes" "crypto/sha256" "fmt" "io" "gvisor.dev/gvisor/pkg/usermem" ) const ( // sha256DigestSize specifies the digest size of a SHA256 hash. sha256DigestSize = 32 ) // Layout defines the scale of a Merkle tree. type Layout struct { // blockSize is the size of a data block to be hashed. blockSize int64 // digestSize is the size of a generated hash. digestSize int64 // levelOffset contains the offset of the begnning of each level in // bytes. The number of levels in the tree is the length of the slice. // The leaf nodes (level 0) contain hashes of blocks of the input data. // Each level N contains hashes of the blocks in level N-1. The highest // level is the root hash. levelOffset []int64 } // InitLayout initializes and returns a new Layout object describing the structure // of a tree. dataSize specifies the size of input data in bytes. func InitLayout(dataSize int64) Layout { layout := Layout{ blockSize: usermem.PageSize, // TODO(b/156980949): Allow config other hash methods (SHA384/SHA512). digestSize: sha256DigestSize, } numBlocks := (dataSize + layout.blockSize - 1) / layout.blockSize level := 0 offset := int64(0) // Calculate the number of levels in the Merkle tree and the beginning // offset of each level. Level 0 consists of the leaf nodes that // contain the hashes of the data blocks, while level numLevels - 1 is // the root. for numBlocks > 1 { layout.levelOffset = append(layout.levelOffset, offset*layout.blockSize) // Round numBlocks up to fill up a block. numBlocks += (layout.hashesPerBlock() - numBlocks%layout.hashesPerBlock()) % layout.hashesPerBlock() offset += numBlocks / layout.hashesPerBlock() numBlocks = numBlocks / layout.hashesPerBlock() level++ } layout.levelOffset = append(layout.levelOffset, offset*layout.blockSize) return layout } // hashesPerBlock() returns the number of digests in each block. For example, // if blockSize is 4096 bytes, and digestSize is 32 bytes, there will be 128 // hashesPerBlock. Therefore 128 hashes in one level will be combined in one // hash in the level above. func (layout Layout) hashesPerBlock() int64 { return layout.blockSize / layout.digestSize } // numLevels returns the total number of levels in the Merkle tree. func (layout Layout) numLevels() int { return len(layout.levelOffset) } // rootLevel returns the level of the root hash. func (layout Layout) rootLevel() int { return layout.numLevels() - 1 } // digestOffset finds the offset of a digest from the beginning of the tree. // The target digest is at level of the tree, with index from the beginning of // the current level. func (layout Layout) digestOffset(level int, index int64) int64 { return layout.levelOffset[level] + index*layout.digestSize } // blockOffset finds the offset of a block from the beginning of the tree. The // target block is at level of the tree, with index from the beginning of the // current level. func (layout Layout) blockOffset(level int, index int64) int64 { return layout.levelOffset[level] + index*layout.blockSize } // Generate constructs a Merkle tree for the contents of data. The output is // written to treeWriter. The treeReader should be able to read the tree after // it has been written. That is, treeWriter and treeReader should point to the // same underlying data but have separate cursors. func Generate(data io.Reader, dataSize int64, treeReader io.Reader, treeWriter io.Writer) ([]byte, error) { layout := InitLayout(dataSize) numBlocks := (dataSize + layout.blockSize - 1) / layout.blockSize var root []byte for level := 0; level < layout.numLevels(); level++ { for i := int64(0); i < numBlocks; i++ { buf := make([]byte, layout.blockSize) var ( n int err error ) if level == 0 { // Read data block from the target file since level 0 includes hashes // of blocks in the input data. n, err = data.Read(buf) } else { // Read data block from the tree file since levels higher than 0 are // hashing the lower level hashes. n, err = treeReader.Read(buf) } // err is populated as long as the bytes read is smaller than the buffer // size. This could be the case if we are reading the last block, and // break in that case. If this is the last block, the end of the block // will be zero-padded. if n == 0 && err == io.EOF { break } else if err != nil && err != io.EOF { return nil, err } // Hash the bytes in buf. digest := sha256.Sum256(buf) if level == layout.rootLevel() { root = digest[:] } // Write the generated hash to the end of the tree file. if _, err = treeWriter.Write(digest[:]); err != nil { return nil, err } } // If the generated digests do not round up to a block, zero-padding the // remaining of the last block. But no need to do so for root. if level != layout.rootLevel() && numBlocks%layout.hashesPerBlock() != 0 { zeroBuf := make([]byte, layout.blockSize-(numBlocks%layout.hashesPerBlock())*layout.digestSize) if _, err := treeWriter.Write(zeroBuf[:]); err != nil { return nil, err } } numBlocks = (numBlocks + layout.hashesPerBlock() - 1) / layout.hashesPerBlock() } return root, nil } // Verify verifies the content read from data with offset. The content is // verified against tree. If content spans across multiple blocks, each block is // verified. Verification fails if the hash of the data does not match the tree // at any level, or if the final root hash does not match expectedRoot. // Once the data is verified, it will be written using w. // Verify will modify the cursor for data, but always restores it to its // original position upon exit. The cursor for tree is modified and not // restored. func Verify(w io.Writer, data, tree io.ReadSeeker, dataSize int64, readOffset int64, readSize int64, expectedRoot []byte) error { if readSize <= 0 { return fmt.Errorf("Unexpected read size: %d", readSize) } layout := InitLayout(int64(dataSize)) // Calculate the index of blocks that includes the target range in input // data. firstDataBlock := readOffset / layout.blockSize lastDataBlock := (readOffset + readSize - 1) / layout.blockSize // Store the current offset, so we can set it back once verification // finishes. origOffset, err := data.Seek(0, io.SeekCurrent) if err != nil { return fmt.Errorf("Find current data offset failed: %v", err) } defer data.Seek(origOffset, io.SeekStart) // Move to the first block that contains target data. if _, err := data.Seek(firstDataBlock*layout.blockSize, io.SeekStart); err != nil { return fmt.Errorf("Seek to datablock start failed: %v", err) } buf := make([]byte, layout.blockSize) var readErr error bytesRead := 0 for i := firstDataBlock; i <= lastDataBlock; i++ { // Read a block that includes all or part of target range in // input data. bytesRead, readErr = data.Read(buf) // If at the end of input data and all previous blocks are // verified, return the verified input data and EOF. if readErr == io.EOF && bytesRead == 0 { break } if readErr != nil && readErr != io.EOF { return fmt.Errorf("Read from data failed: %v", err) } // If this is the end of file, zero the remaining bytes in buf, // otherwise they are still from the previous block. // TODO(b/162908070): Investigate possible issues with zero // padding the data. if bytesRead < len(buf) { for j := bytesRead; j < len(buf); j++ { buf[j] = 0 } } if err := verifyBlock(tree, layout, buf, i, expectedRoot); err != nil { return err } // startOff is the beginning of the read range within the // current data block. Note that for all blocks other than the // first, startOff should be 0. startOff := int64(0) if i == firstDataBlock { startOff = readOffset % layout.blockSize } // endOff is the end of the read range within the current data // block. Note that for all blocks other than the last, endOff // should be the block size. endOff := layout.blockSize if i == lastDataBlock { endOff = (readOffset+readSize-1)%layout.blockSize + 1 } // If the provided size exceeds the end of input data, we should // only copy the parts in buf that's part of input data. if startOff > int64(bytesRead) { startOff = int64(bytesRead) } if endOff > int64(bytesRead) { endOff = int64(bytesRead) } w.Write(buf[startOff:endOff]) } return readErr } // verifyBlock verifies a block against tree. index is the number of block in // original data. The block is verified through each level of the tree. It // fails if the calculated hash from block is different from any level of // hashes stored in tree. And the final root hash is compared with // expectedRoot. verifyBlock modifies the cursor for tree. Users needs to // maintain the cursor if intended. func verifyBlock(tree io.ReadSeeker, layout Layout, dataBlock []byte, blockIndex int64, expectedRoot []byte) error { if len(dataBlock) != int(layout.blockSize) { return fmt.Errorf("incorrect block size") } expectedDigest := make([]byte, layout.digestSize) treeBlock := make([]byte, layout.blockSize) var digest []byte for level := 0; level < layout.numLevels(); level++ { // Calculate hash. if level == 0 { digestArray := sha256.Sum256(dataBlock) digest = digestArray[:] } else { // Read a block in previous level that contains the // hash we just generated, and generate a next level // hash from it. if _, err := tree.Seek(layout.blockOffset(level-1, blockIndex), io.SeekStart); err != nil { return err } if _, err := tree.Read(treeBlock); err != nil { return err } digestArray := sha256.Sum256(treeBlock) digest = digestArray[:] } // Move to stored hash for the current block, read the digest // and store in expectedDigest. if _, err := tree.Seek(layout.digestOffset(level, blockIndex), io.SeekStart); err != nil { return err } if _, err := tree.Read(expectedDigest); err != nil { return err } if !bytes.Equal(digest, expectedDigest) { return fmt.Errorf("Verification failed") } // If this is the root layer, no need to generate next level // hash. if level == layout.rootLevel() { break } blockIndex = blockIndex / layout.hashesPerBlock() } // Verification for the tree succeeded. Now compare the root hash in the // tree with expectedRoot. if !bytes.Equal(digest[:], expectedRoot) { return fmt.Errorf("Verification failed") } return nil }