Age | Commit message (Collapse) | Author |
|
It was possible to panic the sentry by opening a cache revalidating folder with
O_TRUNC|O_CREAT.
Avoids breaking php tests.
PiperOrigin-RevId: 280533213
|
|
This was intended behavior per the README, but running tests without the --test
flag caused an error. Users can now omit the --test flag to run every test for a
runtime.
PiperOrigin-RevId: 280522025
|
|
PiperOrigin-RevId: 280295208
|
|
PiperOrigin-RevId: 280264564
|
|
Add additional tests for UDP SO_REUSEADDR and SO_REUSEPORT interaction.
If all existing all currently bound sockets as well as the current binding
socket have SO_REUSEADDR, or if all existing all currently bound sockets as
well as the current binding socket have SO_REUSEPORT, binding a currently bound
address is allowed. This seems odd since it means that the
SO_REUSEADDR/SO_REUSEPORT behavior can change with the binding of additional
sockets.
PiperOrigin-RevId: 280116163
|
|
* Basic tests for the SO_REUSEADDR and SO_REUSEPORT options.
* SO_REUSEADDR functional tests for TCP and UDP.
* SO_REUSEADDR and SO_REUSEPORT interaction tests for UDP.
* Stubbed support for UDP getsockopt(SO_REUSEADDR).
PiperOrigin-RevId: 280049265
|
|
The existing tests which are disabled on gVisor are failing because we default
to SO_REUSEADDR being enabled for TCP sockets. Update the test comments.
Also add new tests for enabled SO_REUSEADDR.
PiperOrigin-RevId: 279862275
|
|
PiperOrigin-RevId: 279835100
|
|
PiperOrigin-RevId: 279814493
|
|
This change adds explicit support for honoring the 2MSL timeout
for sockets in TIME_WAIT state. It also adds support for the
TCP_LINGER2 option that allows modification of the FIN_WAIT2
state timeout duration for a given socket.
It also adds an option to modify the Stack wide TIME_WAIT timeout
but this is only for testing. On Linux this is fixed at 60s.
Further, we also now correctly process RST's in CLOSE_WAIT and
close the socket similar to linux without moving it to error
state.
We also now handle SYN in ESTABLISHED state as per
RFC5961#section-4.1. Earlier we would just drop these SYNs.
Which can result in some tests that pass on linux to fail on
gVisor.
Netstack now honors TIME_WAIT correctly as well as handles the
following cases correctly.
- TCP RSTs in TIME_WAIT are ignored.
- A duplicate TCP FIN during TIME_WAIT extends the TIME_WAIT
and a dup ACK is sent in response to the FIN as the dup FIN
indicates potential loss of the original final ACK.
- An out of order segment during TIME_WAIT generates a dup ACK.
- A new SYN w/ a sequence number > the highest sequence number
in the previous connection closes the TIME_WAIT early and
opens a new connection.
Further to make the SYN case work correctly the ISN (Initial
Sequence Number) generation for Netstack has been updated to
be as per RFC. Its not a pure random number anymore and follows
the recommendation in https://tools.ietf.org/html/rfc6528#page-3.
The current hash used is not a cryptographically secure hash
function. A separate change will update the hash function used
to Siphash similar to what is used in Linux.
PiperOrigin-RevId: 279106406
|
|
Fixes #1140
PiperOrigin-RevId: 279020846
|
|
Fixes #1140
PiperOrigin-RevId: 279012793
|
|
PacketBuffers are analogous to Linux's sk_buff. They hold all information about
a packet, headers, and payload. This is important for:
* iptables to access various headers of packets
* Preventing the clutter of passing different net and link headers along with
VectorisedViews to packet handling functions.
This change only affects the incoming packet path, and a future change will
change the outgoing path.
Benchmark Regular PacketBufferPtr PacketBufferConcrete
--------------------------------------------------------------------------------
BM_Recvmsg 400.715MB/s 373.676MB/s 396.276MB/s
BM_Sendmsg 361.832MB/s 333.003MB/s 335.571MB/s
BM_Recvfrom 453.336MB/s 393.321MB/s 381.650MB/s
BM_Sendto 378.052MB/s 372.134MB/s 341.342MB/s
BM_SendmsgTCP/0/1k 353.711MB/s 316.216MB/s 322.747MB/s
BM_SendmsgTCP/0/2k 600.681MB/s 588.776MB/s 565.050MB/s
BM_SendmsgTCP/0/4k 995.301MB/s 888.808MB/s 941.888MB/s
BM_SendmsgTCP/0/8k 1.517GB/s 1.274GB/s 1.345GB/s
BM_SendmsgTCP/0/16k 1.872GB/s 1.586GB/s 1.698GB/s
BM_SendmsgTCP/0/32k 1.017GB/s 1.020GB/s 1.133GB/s
BM_SendmsgTCP/0/64k 475.626MB/s 584.587MB/s 627.027MB/s
BM_SendmsgTCP/0/128k 416.371MB/s 503.434MB/s 409.850MB/s
BM_SendmsgTCP/0/256k 323.449MB/s 449.599MB/s 388.852MB/s
BM_SendmsgTCP/0/512k 243.992MB/s 267.676MB/s 314.474MB/s
BM_SendmsgTCP/0/1M 95.138MB/s 95.874MB/s 95.417MB/s
BM_SendmsgTCP/0/2M 96.261MB/s 94.977MB/s 96.005MB/s
BM_SendmsgTCP/0/4M 96.512MB/s 95.978MB/s 95.370MB/s
BM_SendmsgTCP/0/8M 95.603MB/s 95.541MB/s 94.935MB/s
BM_SendmsgTCP/0/16M 94.598MB/s 94.696MB/s 94.521MB/s
BM_SendmsgTCP/0/32M 94.006MB/s 94.671MB/s 94.768MB/s
BM_SendmsgTCP/0/64M 94.133MB/s 94.333MB/s 94.746MB/s
BM_SendmsgTCP/0/128M 93.615MB/s 93.497MB/s 93.573MB/s
BM_SendmsgTCP/0/256M 93.241MB/s 95.100MB/s 93.272MB/s
BM_SendmsgTCP/1/1k 303.644MB/s 316.074MB/s 308.430MB/s
BM_SendmsgTCP/1/2k 537.093MB/s 584.962MB/s 529.020MB/s
BM_SendmsgTCP/1/4k 882.362MB/s 939.087MB/s 892.285MB/s
BM_SendmsgTCP/1/8k 1.272GB/s 1.394GB/s 1.296GB/s
BM_SendmsgTCP/1/16k 1.802GB/s 2.019GB/s 1.830GB/s
BM_SendmsgTCP/1/32k 2.084GB/s 2.173GB/s 2.156GB/s
BM_SendmsgTCP/1/64k 2.515GB/s 2.463GB/s 2.473GB/s
BM_SendmsgTCP/1/128k 2.811GB/s 3.004GB/s 2.946GB/s
BM_SendmsgTCP/1/256k 3.008GB/s 3.159GB/s 3.171GB/s
BM_SendmsgTCP/1/512k 2.980GB/s 3.150GB/s 3.126GB/s
BM_SendmsgTCP/1/1M 2.165GB/s 2.233GB/s 2.163GB/s
BM_SendmsgTCP/1/2M 2.370GB/s 2.219GB/s 2.453GB/s
BM_SendmsgTCP/1/4M 2.005GB/s 2.091GB/s 2.214GB/s
BM_SendmsgTCP/1/8M 2.111GB/s 2.013GB/s 2.109GB/s
BM_SendmsgTCP/1/16M 1.902GB/s 1.868GB/s 1.897GB/s
BM_SendmsgTCP/1/32M 1.655GB/s 1.665GB/s 1.635GB/s
BM_SendmsgTCP/1/64M 1.575GB/s 1.547GB/s 1.575GB/s
BM_SendmsgTCP/1/128M 1.524GB/s 1.584GB/s 1.580GB/s
BM_SendmsgTCP/1/256M 1.579GB/s 1.607GB/s 1.593GB/s
PiperOrigin-RevId: 278940079
|
|
PiperOrigin-RevId: 278739427
|
|
We don't know how stable they are, so let's start with warning.
PiperOrigin-RevId: 278484186
|
|
NETLINK_KOBJECT_UEVENT sockets send udev-style messages for device events.
gVisor doesn't have any device events, so our sockets don't need to do anything
once created.
systemd's device manager needs to be able to create one of these sockets. It
also wants to install a BPF filter on the socket. Since we'll never send any
messages, the filter would never be invoked, thus we just fake it out.
Fixes #1117
Updates #1119
PiperOrigin-RevId: 278405893
|
|
Since we only supporting sending messages from the kernel, the peer is always
the kernel, simplifying handling.
There are currently no known users of SO_PASSCRED that would actually receive
messages from gVisor, but adding full support is barely more work than stubbing
out fake support.
Updates #1117
Fixes #1119
PiperOrigin-RevId: 277981465
|
|
PiperOrigin-RevId: 277971910
|
|
PiperOrigin-RevId: 277965624
|
|
PiperOrigin-RevId: 277607217
|
|
It is required to guarantee the same order of endpoints after save/restore.
PiperOrigin-RevId: 277598665
|
|
PiperOrigin-RevId: 277572791
|
|
When execveat is called on an interpreter script, the symlink count for
resolving the script path should be separate from the count for resolving the
the corresponding interpreter. An ELOOP error should not occur if we do not hit
the symlink limit along any individual path, even if the total number of
symlinks encountered exceeds the limit.
Closes #574
PiperOrigin-RevId: 277358474
|
|
Set the snd/rcv buffer sizes so that the test is deterministic and runs in a
reasonable amount of time. It also ensures that we disable any auto-tuning of
the send/receive buffer which may happen.
PiperOrigin-RevId: 277337232
|
|
When an interpreter script is opened with O_CLOEXEC and the resulting fd is
passed into execveat, an ENOENT error should occur (the script would otherwise
be inaccessible to the interpreter). This matches the actual behavior of
Linux's execveat.
PiperOrigin-RevId: 277306680
|
|
PiperOrigin-RevId: 277189064
|
|
Signed-off-by: Haibo Xu <haibo.xu@arm.com>
Change-Id: I05a7ec69b98b88931ba4a8adb3e8a7b822006001
COPYBARA_INTEGRATE_REVIEW=https://github.com/google/gvisor/pull/1023 from xiaobo55x:syscall_test d44a8b1f827ed4081997af96cd58ba7449e0a9e1
PiperOrigin-RevId: 276740442
|
|
container.startContainers() cannot be called twice in a test
(e.g. TestMultiContainerLoadSandbox) because the cleanup
function deletes the rootDir, together with information from
all other containers that may exist.
PiperOrigin-RevId: 276591806
|
|
PiperOrigin-RevId: 276441249
|
|
PiperOrigin-RevId: 276419967
|
|
As in packet_socket_raw.cc, we should check that certain proc files are set
correctly.
PiperOrigin-RevId: 276384534
|
|
PiperOrigin-RevId: 276380008
|
|
Some compilers don't like the comparison between int and size_t. Remove it.
The other changes are minor style cleanups.
PiperOrigin-RevId: 276333450
|
|
Allow file descriptors of directories as well as AT_FDCWD.
PiperOrigin-RevId: 275929668
|
|
Like (AF_INET, SOCK_RAW) sockets, AF_PACKET sockets require CAP_NET_RAW. With
runsc, you'll need to pass `--net-raw=true` to enable them.
Binding isn't supported yet.
PiperOrigin-RevId: 275909366
|
|
PiperOrigin-RevId: 275565958
|
|
This change fixes several issues with the fsgofer host UDS support. Notably, it
adds support for SOCK_SEQPACKET and SOCK_DGRAM sockets [1]. It also fixes
unsafe use of unet.Socket, which could cause a panic if Socket.FD is called
when err != nil, and calls to Socket.FD with nothing to prevent the garbage
collector from destroying and closing the socket.
A set of tests is added to exercise host UDS access. This required extracting
most of the syscall test runner into a library that can be used by custom
tests.
Updates #235
Updates #1003
[1] N.B. SOCK_DGRAM sockets are likely not particularly useful, as a server can
only reply to a client that binds first. We don't allow bind, so these are
unlikely to be used.
PiperOrigin-RevId: 275558502
|
|
* Use mknod instead of open&close to create an empty file.
* Limit a number of files to (1<<16) instead of 100K.
In this case, a test set is (1, 8, 64, 512, 4K, 32K, 64K) instead of (1, 8, 64,
512, 4K, 32K, 98K). I think it is easier to compare results for 32K and 64K
than 32K and 98K. And results for 98K doesn't give us more information than for
54K.
PiperOrigin-RevId: 275552507
|
|
Otherwise we need to do a lot of system calls and cooperative_save tests work
slow.
PiperOrigin-RevId: 275536957
|
|
PiperOrigin-RevId: 275114157
|
|
These aren't actually death tests in the GUnit sense. i.e., they don't call
EXPECT_EXIT or EXPECT_DEATH.
PiperOrigin-RevId: 275099957
|
|
Netstack has its own stats, we use this to fill /proc/net/snmp.
Note that some metrics are not recorded in Netstack, which will be shown
as 0 in the proc file.
Signed-off-by: Jianfeng Tan <henry.tjf@antfin.com>
Change-Id: Ie0089184507d16f49bc0057b4b0482094417ebe1
|
|
This proc file contains statistics according to [1].
[1] https://tools.ietf.org/html/rfc2013
Signed-off-by: Jianfeng Tan <henry.tjf@antfin.com>
Change-Id: I9662132085edd8a7783d356ce4237d7ac0800d94
|
|
PiperOrigin-RevId: 274700093
|
|
This allows for peeking at the length of the next message on a netlink socket
without pulling it off the socket's buffer/queue, allowing tools like 'ip' to
work.
This CL also fixes an issue where dump_done_errno was not included in the
NLMSG_DONE messages payload.
Issue #769
PiperOrigin-RevId: 274068637
|
|
The signalfd descriptors otherwise always show as available. This can lead
programs to spin, assuming they are looking to see what signals are pending.
Updates #139
PiperOrigin-RevId: 274017890
|
|
PiperOrigin-RevId: 273781112
|
|
Also change the default TTL to 64 to match Linux.
PiperOrigin-RevId: 273430341
|
|
Adds two tests. One to make sure that $HOME is set when starting a container
via 'docker run' and one to make sure that $HOME is set for each container in a
multi-container sandbox.
Issue #701
PiperOrigin-RevId: 273395763
|
|
The behavior for sending and receiving local broadcast (255.255.255.255)
traffic is as follows:
Outgoing
--------
* A broadcast packet sent on a socket that is bound to an interface goes out
that interface
* A broadcast packet sent on an unbound socket follows the route table to
select the outgoing interface
+ if an explicit route entry exists for 255.255.255.255/32, use that one
+ else use the default route
* Broadcast packets are looped back and delivered following the rules for
incoming packets (see next). This is the same behavior as for multicast
packets, except that it cannot be disabled via sockopt.
Incoming
--------
* Sockets wishing to receive broadcast packets must bind to either INADDR_ANY
(0.0.0.0) or INADDR_BROADCAST (255.255.255.255). No other socket receives
broadcast packets.
* Broadcast packets are multiplexed to all sockets matching it. This is the
same behavior as for multicast packets.
* A socket can bind to 255.255.255.255:<port> and then receive its own
broadcast packets sent to 255.255.255.255:<port>
In addition, this change implicitly fixes an issue with multicast reception. If
two sockets want to receive a given multicast stream and one is bound to ANY
while the other is bound to the multicast address, only one of them will
receive the traffic.
PiperOrigin-RevId: 272792377
|