Age | Commit message (Collapse) | Author |
|
Metadata was useful for debugging and safety, but enough tests exist that we
should see failures when (de)serialization is broken. It made stack
initialization more cumbersome and it's also getting in the way of ip6tables.
PiperOrigin-RevId: 317210653
|
|
Updates #173,#6
Fixes #2888
PiperOrigin-RevId: 317087652
|
|
--tx-checksum-offload=<true|false>
enable TX checksum offload (default: false)
--rx-checksum-offload=<true|false>
enable RX checksum offload (default: true)
Fixes #2989
PiperOrigin-RevId: 316781309
|
|
The previous format skipped many important structs that
are pointers, especially for cgroups. Change to print
as json, removing parts of the spec that are not relevant.
Also removed debug message from gofer that can be very
noisy when directories are large.
PiperOrigin-RevId: 316713267
|
|
Fixes #701
PiperOrigin-RevId: 316025635
|
|
Major differences from existing overlay filesystems:
- Linux allows lower layers in an overlay to require revalidation, but not the
upper layer. VFS1 allows the upper layer in an overlay to require
revalidation, but not the lower layer. VFS2 does not allow any layers to
require revalidation. (Now that vfs.MkdirOptions.ForSyntheticMountpoint
exists, no uses of overlay in VFS1 are believed to require upper layer
revalidation; in particular, the requirement that the upper layer support the
creation of "trusted." extended attributes for whiteouts effectively required
the upper filesystem to be tmpfs in most cases.)
- Like VFS1, but unlike Linux, VFS2 overlay does not attempt to make mutations
of the upper layer atomic using a working directory and features like
RENAME_WHITEOUT. (This may change in the future, since not having a working
directory makes error recovery for some operations, e.g. rmdir, particularly
painful.)
- Like Linux, but unlike VFS1, VFS2 represents whiteouts using character
devices with rdev == 0; the equivalent of the whiteout attribute on
directories is xattr trusted.overlay.opaque = "y"; and there is no equivalent
to the whiteout attribute on non-directories since non-directories are never
merged with lower layers.
- Device and inode numbers work as follows:
- In Linux, modulo the xino feature and a special case for when all layers
are the same filesystem:
- Directories use the overlay filesystem's device number and an
ephemeral inode number assigned by the overlay.
- Non-directories that have been copied up use the device and inode
number assigned by the upper filesystem.
- Non-directories that have not been copied up use a per-(overlay,
layer)-pair device number and the inode number assigned by the lower
filesystem.
- In VFS1, device and inode numbers always come from the lower layer unless
"whited out"; this has the adverse effect of requiring interaction with
the lower filesystem even for non-directory files that exist on the upper
layer.
- In VFS2, device and inode numbers are assigned as in Linux, except that
xino and the samefs special case are not supported.
- Like Linux, but unlike VFS1, VFS2 does not attempt to maintain memory mapping
coherence across copy-up. (This may have to change in the future, as users
may be dependent on this property.)
- Like Linux, but unlike VFS1, VFS2 uses the overlayfs mounter's credentials
when interacting with the overlay's layers, rather than the caller's.
- Like Linux, but unlike VFS1, VFS2 permits multiple lower layers in an
overlay.
- Like Linux, but unlike VFS1, VFS2's overlay filesystem is
application-mountable.
Updates #1199
PiperOrigin-RevId: 316019067
|
|
- Set hugetlb related fields
- Add realtime scheduler related fields
- Beef up unit tests
Updates #2713
PiperOrigin-RevId: 315797979
|
|
LinuxPids.Limit is the only optional cgroup field in OCI that
is not a pointer. If value is 0 or negative it should be
skipped.
PiperOrigin-RevId: 315791909
|
|
PiperOrigin-RevId: 315583963
|
|
Run vs. exec, VFS1 vs. VFS2 were executable lookup were
slightly different from each other. Combine them all
into the same logic.
PiperOrigin-RevId: 315426443
|
|
This is mostly syscall plumbing, VFS2 already implements the internals of
mounts. In addition to the syscall defintions, the following mount-related
mechanisms are updated:
- Implement MS_NOATIME for VFS2, but only for tmpfs and goferfs. The other VFS2
filesystems don't implement node-level timestamps yet.
- Implement the 'mode', 'uid' and 'gid' mount options for VFS2's tmpfs.
- Plumb mount namespace ownership, which is necessary for checking appropriate
capabilities during mount(2).
Updates #1035
PiperOrigin-RevId: 315035352
|
|
PiperOrigin-RevId: 314997564
|
|
IPTables.connections contains a sync.RWMutex. Copying it will trigger copylocks
analysis. Tested by manually enabling nogo tests.
sync.RWMutex is added to IPTables for the additional race condition discovered.
PiperOrigin-RevId: 314817019
|
|
- Add /tmp handling
- Apply mount options
- Enable more container_test tests
- Forward signals to child process when test respaws process
to run as root inside namespace.
Updates #1487
PiperOrigin-RevId: 314263281
|
|
Using tee instead of read to detect when a O_RDONLY|O_NONBLOCK pipe FD has a
writer circumvents the problem of what to do with the byte read from the pipe,
avoiding much of the complexity of the fdpipe package.
PiperOrigin-RevId: 314216146
|
|
SetTraceback("all") does not include all goroutines in panics (you didn't think
it was that simple, did you?). It includes all _user_ goroutines; those started
by the runtime (such as GC workers) are excluded.
Switch to "system" to additionally include runtime goroutines, which are useful
to track down bugs in the runtime itself.
PiperOrigin-RevId: 314204473
|
|
No writes are expected to the underlying filesystem when
using --overlay.
PiperOrigin-RevId: 314171457
|
|
PiperOrigin-RevId: 313871804
|
|
PiperOrigin-RevId: 313828906
|
|
PiperOrigin-RevId: 313663382
|
|
PiperOrigin-RevId: 313636920
|
|
|
|
Updates #2713
PiperOrigin-RevId: 312559463
|
|
PiperOrigin-RevId: 312104899
|
|
* Aggregate architecture Overview in "What is gVisor?" as it makes more sense
in one place.
* Drop "user-space kernel" and use "application kernel". The term "user-space
kernel" is confusing when some platform implementation do not run in
user-space (instead running in guest ring zero).
* Clear up the relationship between the Platform page in the user guide and the
Platform page in the architecture guide, and ensure they are cross-linked.
* Restore the call-to-action quick start link in the main page, and drop the
GitHub link (which also appears in the top-right).
* Improve image formatting by centering all doc and blog images, and move the
image captions to the alt text.
PiperOrigin-RevId: 311845158
|
|
Updates #1487
PiperOrigin-RevId: 311443628
|
|
Linux 4.18 and later make reads and writes coherent between pre-copy-up and
post-copy-up FDs representing the same file on an overlay filesystem. However,
memory mappings remain incoherent:
- Documentation/filesystems/overlayfs.rst, "Non-standard behavior": "If a file
residing on a lower layer is opened for read-only and then memory mapped with
MAP_SHARED, then subsequent changes to the file are not reflected in the
memory mapping."
- fs/overlay/file.c:ovl_mmap() passes through to the underlying FD without any
management of coherence in the overlay.
- Experimentally on Linux 5.2:
```
$ cat mmap_cat_page.c
#include <err.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include <sys/mman.h>
#include <unistd.h>
int main(int argc, char **argv) {
if (argc < 2) {
errx(1, "syntax: %s [FILE]", argv[0]);
}
const int fd = open(argv[1], O_RDONLY);
if (fd < 0) {
err(1, "open(%s)", argv[1]);
}
const size_t page_size = sysconf(_SC_PAGE_SIZE);
void* page = mmap(NULL, page_size, PROT_READ, MAP_SHARED, fd, 0);
if (page == MAP_FAILED) {
err(1, "mmap");
}
for (;;) {
write(1, page, strnlen(page, page_size));
if (getc(stdin) == EOF) {
break;
}
}
return 0;
}
$ gcc -O2 -o mmap_cat_page mmap_cat_page.c
$ mkdir lowerdir upperdir workdir overlaydir
$ echo old > lowerdir/file
$ sudo mount -t overlay -o "lowerdir=lowerdir,upperdir=upperdir,workdir=workdir" none overlaydir
$ ./mmap_cat_page overlaydir/file
old
^Z
[1]+ Stopped ./mmap_cat_page overlaydir/file
$ echo new > overlaydir/file
$ cat overlaydir/file
new
$ fg
./mmap_cat_page overlaydir/file
old
```
Therefore, while the VFS1 gofer client's behavior of reopening read FDs is only
necessary pre-4.18, replacing existing memory mappings (in both sentry and
application address spaces) with mappings of the new FD is required regardless
of kernel version, and this latter behavior is common to both VFS1 and VFS2.
Re-document accordingly, and change the runsc flag to enabled by default.
New test:
- Before this CL: https://source.cloud.google.com/results/invocations/5b222d2c-e918-4bae-afc4-407f5bac509b
- After this CL: https://source.cloud.google.com/results/invocations/f28c747e-d89c-4d8c-a461-602b33e71aab
PiperOrigin-RevId: 311361267
|
|
Updates #1487
PiperOrigin-RevId: 311356385
|
|
PiperOrigin-RevId: 311234146
|
|
PiperOrigin-RevId: 310963404
|
|
Some code paths needed these syscalls anyways, so they should be included in
the filters. Given that we depend on these syscalls in some cases, there's no
real reason to avoid them any more.
PiperOrigin-RevId: 310829126
|
|
Updates #1197, #1198, #1672
PiperOrigin-RevId: 310432006
|
|
PiperOrigin-RevId: 310417191
|
|
Synthetic sockets do not have the race condition issue in VFS2, and we will
get rid of privateunixsocket as well.
Fixes #1200.
PiperOrigin-RevId: 310386474
|
|
We can register any number of tables with any number of architectures, and
need not limit the definitions to the architecture in question. This allows
runsc to generate documentation for all architectures simultaneously.
Similarly, this simplifies the VFSv2 patching process.
PiperOrigin-RevId: 310224827
|
|
Also added back the default test dimension back which was
dropped in a previous refactor.
PiperOrigin-RevId: 309797327
|
|
PiperOrigin-RevId: 309787938
|
|
Updates #1623, #1487
PiperOrigin-RevId: 309777922
|
|
Updates #231
PiperOrigin-RevId: 309339316
|
|
Updates #231
PiperOrigin-RevId: 309323808
|
|
PiperOrigin-RevId: 309082540
|
|
PiperOrigin-RevId: 308829800
|
|
PiperOrigin-RevId: 308727526
|
|
Previously we unconditionally failed to cleanup the networking files
(hostname, resolve.conf, hosts), and failed to cleanup the netns, etc on
partial setup failure.
We can drop the iptables commands from cleanup, as the routes
automatically go away when the device is deleted. Those commands were
failing previously.
Forward signals to the container, allowing it to exit normally when a
signal is received, and then for runsc to run the cleanup. This doesn't
cover cleanup when runsc is signalled before the container start, it
covers the most common case.
Fixes #2539
Fixes #2540
|
|
Use the sighandling package for Container.ForwardSignals, for
consistency with other signal forwarding.
Fixes #2546
|
|
typo, should be `start` in comments
|
|
Signed-off-by: moricho <ikeda.morito@gmail.com>
|
|
Several tests are passing after getting TestAppExitStatus (run /bin/true)
changes. Make versions that run via VFS2 so that we know what is and isn't
working.
In addition, fix bug in VFSFile ReadFull. For the TestExePath test in
container_test.go, the case "unmasked" will return 0 bytes read with no
EOF err, causing the ReadFull call to spin.
PiperOrigin-RevId: 308428126
|
|
Signed-off-by: moricho <ikeda.morito@gmail.com>
|
|
rbind
Signed-off-by: moricho <ikeda.morito@gmail.com>
|