Age | Commit message (Collapse) | Author |
|
Allow user mounting a verity fs on an existing mount by specifying mount
flags root_hash and lower_path.
PiperOrigin-RevId: 366843846
|
|
A skeleton implementation of cgroupfs. It supports trivial cpu and
memory controllers with no support for hierarchies.
PiperOrigin-RevId: 366561126
|
|
Implement a new runsc command to set up a sandbox with verityfs and
run the measure tool. This is loosely forked from the do command, and
currently requires the caller to provide the measure tool binary.
PiperOrigin-RevId: 366553769
|
|
--file-access-mounts flag is similar to --file-access, but controls
non-root mounts that were previously mounted in shared mode only.
This gives more flexibility to control how mounts are shared within
a container.
PiperOrigin-RevId: 364669882
|
|
Fixes #4991
PiperOrigin-RevId: 345800333
|
|
Inode number consistency checks are now skipped in save/restore tests for
reasons described in greatest detail in StatTest.StateDoesntChangeAfterRename.
They pass in VFS1 due to the bug described in new test case
SimpleStatTest.DifferentFilesHaveDifferentDeviceInodeNumberPairs.
Fixes #1663
PiperOrigin-RevId: 338776148
|
|
- Check the sticky bit in overlay.filesystem.UnlinkAt(). Fixes
StickyTest.StickyBitPermDenied.
- When configuring a VFS2 overlay in runsc, copy the lower layer's root
owner/group/mode to the upper layer's root (as in the VFS1 equivalent,
boot.addOverlay()). This makes the overlay root owned by UID/GID 65534 with
mode 0755 rather than owned by UID/GID 0 with mode 01777. Fixes
CreateTest.CreateFailsOnUnpermittedDir, which assumes that the test cannot
create files in /.
- MknodTest.UnimplementedTypesReturnError assumes that the creation of device
special files is not supported. However, while the VFS2 gofer client still
doesn't support device special files, VFS2 tmpfs does, and in the overlay
test dimension mknod() targets a tmpfs upper layer. The test initially has
all capabilities, including CAP_MKNOD, so its creation of these files
succeeds. Constrain these tests to VFS1.
- Rename overlay.nonDirectoryFD to overlay.regularFileFD and only use it for
regular files, using the original FD for pipes and device special files. This
is more consistent with Linux (which gets the original inode_operations, and
therefore file_operations, for these file types from ovl_fill_inode() =>
init_special_inode()) and fixes remaining mknod and pipe tests.
- Read/write 1KB at a time in PipeTest.Streaming, rather than 4 bytes. This
isn't strictly necessary, but it makes the test less obnoxiously slow on
ptrace.
Fixes #4407
PiperOrigin-RevId: 337971042
|
|
This fixes reference leaks related to accidentally forgetting to DecRef()
after calling one or the other.
PiperOrigin-RevId: 336918922
|
|
All tests under runsc are passing with overlay enabled.
Updates #1487, #1199
PiperOrigin-RevId: 332181267
|
|
Updates #1487
PiperOrigin-RevId: 330580699
|
|
Unlike linux mount(2), OCI spec allows mounting on top of an existing
non-directory file.
PiperOrigin-RevId: 327914342
|
|
This lets us create "synthetic" mountpoint directories in ReadOnly mounts
during VFS setup.
Also add context.WithMountNamespace, as some filesystems (like overlay) require
a MountNamespace on ctx to handle vfs.Filesystem Operations.
PiperOrigin-RevId: 327874971
|
|
Refactored the recursive dir creation util in runsc/boot/vfs.go to be more
flexible.
PiperOrigin-RevId: 327719100
|
|
Updates #3494
PiperOrigin-RevId: 327548511
|
|
Earlier we were using NLink to decide if /tmp is empty or not. However, NLink
at best tells us about the number of subdirectories (via the ".." entries).
NLink = n + 2 for n subdirectories. But it does not tell us if the directory is
empty. There still might be non-directory files. We could also not rely on
NLink because host overlayfs always returned 1.
VFS1 uses Readdir to decide if the directory is empty. Used a similar approach.
We now use IterDirents to decide if the "/tmp" directory is empty.
Fixes #3369
PiperOrigin-RevId: 325554234
|
|
PiperOrigin-RevId: 325266487
|
|
context is passed to DecRef() and Release() which is
needed for SO_LINGER implementation.
PiperOrigin-RevId: 324672584
|
|
PiperOrigin-RevId: 324080111
|
|
Allow FUSE filesystems to be mounted using libfuse.
The appropriate flags and mount options are parsed and
understood by fusefs.
|
|
This change gates all FUSE commands (by gating /dev/fuse) behind a runsc
flag. In order to use FUSE commands, use the --fuse flag with the --vfs2
flag. Check if FUSE is enabled by running dmesg in the sandbox.
|
|
Container restart test is disabled for VFS2 for now.
Updates #1487
PiperOrigin-RevId: 320296401
|
|
|
|
|
|
Updates #2912 #1035
PiperOrigin-RevId: 318162565
|
|
Support is limited to the functionality that exists in VFS1.
Updates #2923 #1035
PiperOrigin-RevId: 317981417
|
|
Major differences from existing overlay filesystems:
- Linux allows lower layers in an overlay to require revalidation, but not the
upper layer. VFS1 allows the upper layer in an overlay to require
revalidation, but not the lower layer. VFS2 does not allow any layers to
require revalidation. (Now that vfs.MkdirOptions.ForSyntheticMountpoint
exists, no uses of overlay in VFS1 are believed to require upper layer
revalidation; in particular, the requirement that the upper layer support the
creation of "trusted." extended attributes for whiteouts effectively required
the upper filesystem to be tmpfs in most cases.)
- Like VFS1, but unlike Linux, VFS2 overlay does not attempt to make mutations
of the upper layer atomic using a working directory and features like
RENAME_WHITEOUT. (This may change in the future, since not having a working
directory makes error recovery for some operations, e.g. rmdir, particularly
painful.)
- Like Linux, but unlike VFS1, VFS2 represents whiteouts using character
devices with rdev == 0; the equivalent of the whiteout attribute on
directories is xattr trusted.overlay.opaque = "y"; and there is no equivalent
to the whiteout attribute on non-directories since non-directories are never
merged with lower layers.
- Device and inode numbers work as follows:
- In Linux, modulo the xino feature and a special case for when all layers
are the same filesystem:
- Directories use the overlay filesystem's device number and an
ephemeral inode number assigned by the overlay.
- Non-directories that have been copied up use the device and inode
number assigned by the upper filesystem.
- Non-directories that have not been copied up use a per-(overlay,
layer)-pair device number and the inode number assigned by the lower
filesystem.
- In VFS1, device and inode numbers always come from the lower layer unless
"whited out"; this has the adverse effect of requiring interaction with
the lower filesystem even for non-directory files that exist on the upper
layer.
- In VFS2, device and inode numbers are assigned as in Linux, except that
xino and the samefs special case are not supported.
- Like Linux, but unlike VFS1, VFS2 does not attempt to maintain memory mapping
coherence across copy-up. (This may have to change in the future, as users
may be dependent on this property.)
- Like Linux, but unlike VFS1, VFS2 uses the overlayfs mounter's credentials
when interacting with the overlay's layers, rather than the caller's.
- Like Linux, but unlike VFS1, VFS2 permits multiple lower layers in an
overlay.
- Like Linux, but unlike VFS1, VFS2's overlay filesystem is
application-mountable.
Updates #1199
PiperOrigin-RevId: 316019067
|
|
Run vs. exec, VFS1 vs. VFS2 were executable lookup were
slightly different from each other. Combine them all
into the same logic.
PiperOrigin-RevId: 315426443
|
|
This is mostly syscall plumbing, VFS2 already implements the internals of
mounts. In addition to the syscall defintions, the following mount-related
mechanisms are updated:
- Implement MS_NOATIME for VFS2, but only for tmpfs and goferfs. The other VFS2
filesystems don't implement node-level timestamps yet.
- Implement the 'mode', 'uid' and 'gid' mount options for VFS2's tmpfs.
- Plumb mount namespace ownership, which is necessary for checking appropriate
capabilities during mount(2).
Updates #1035
PiperOrigin-RevId: 315035352
|
|
- Add /tmp handling
- Apply mount options
- Enable more container_test tests
- Forward signals to child process when test respaws process
to run as root inside namespace.
Updates #1487
PiperOrigin-RevId: 314263281
|
|
PiperOrigin-RevId: 313871804
|
|
PiperOrigin-RevId: 313636920
|
|
Updates #1487
PiperOrigin-RevId: 311443628
|
|
Updates #1487
PiperOrigin-RevId: 311356385
|
|
PiperOrigin-RevId: 311234146
|
|
Synthetic sockets do not have the race condition issue in VFS2, and we will
get rid of privateunixsocket as well.
Fixes #1200.
PiperOrigin-RevId: 310386474
|
|
PiperOrigin-RevId: 309787938
|
|
Updates #1623, #1487
PiperOrigin-RevId: 309777922
|
|
This change includes:
- Modifications to loader_test.go to get TestCreateMountNamespace to
pass with VFS2.
- Changes necessary to get TestHelloWorld in image tests to pass with
VFS2. This means runsc can run the hello-world container with docker
on VSF2.
Note: Containers that use sockets will not run with these changes.
See "//test/image/...". Any tests here with sockets currently fail
(which is all of them but HelloWorld).
PiperOrigin-RevId: 308363072
|
|
PiperOrigin-RevId: 308143529
|
|
Included:
- loader_test.go RunTest and TestStartSignal VFS2
- container_test.go TestAppExitStatus on VFS2
- experimental flag added to runsc to turn on VFS2
Note: shared mounts are not yet supported.
PiperOrigin-RevId: 307070753
|