Age | Commit message (Collapse) | Author |
|
Startblock:
has LGTM from asfez
and then
add reviewer tamird
PiperOrigin-RevId: 347928471
|
|
PiperOrigin-RevId: 347911316
|
|
PiperOrigin-RevId: 347890782
|
|
sacked_out is required in RACK to check the number of duplicate
acknowledgements during updating the reorder window. If there is no reordering
and the value for sacked_out is greater than the classic threshold value 3,
then reorder window is set to zero.
It is calculated by counting the number of segments sacked in the ACK and is
reduced when a cumulative ACK is received which covers the SACK blocks. This
value is set to zero when the connection enters recovery.
PiperOrigin-RevId: 347872246
|
|
When the scaled receive window size > 65535 (max uint16), we advertise
the scaled value as 65535, but are not adjusting the saved receive
window value when doing so. This would keep our current window
calculation logic to be incorrect, as the saved receive window value
is different from what was advertised.
Fixes #4903
PiperOrigin-RevId: 347771340
|
|
RFC 2711 specifies that the router alert's length field is always 2
so we should make sure only 2 bytes are read from a router alert
option's data field.
Test: header.TestIPv6OptionsExtHdrIterErr
PiperOrigin-RevId: 347727876
|
|
PiperOrigin-RevId: 347720083
|
|
Startblock:
has LGTM from asfez
and then
add reviewer brunodalbo
PiperOrigin-RevId: 347716242
|
|
PiperOrigin-RevId: 347711998
|
|
PiperOrigin-RevId: 347706953
|
|
syzkaller reported the closing of a nil channel. This is only possible when the
AIOContext was destroyed twice.
Some scenarios that could lead to this:
- It died and then some called aioCtx.Prepare() on it and then killed it again
which could cause the double destroy. The context could have been destroyed
in between the call to LookupAIOContext() and Prepare().
- aioManager was destroyed but it did not update the contexts map. So
Lookup could still return a dead AIOContext and then someone could call
Prepare on it and kill it again.
So added a check in aioCtx.Prepare() for the context being dead. This will
prevent a dead context from resurrecting.
Also refactored code to destroy the aioContext consistently. Earlier we were not
munmapping the aioContexts that were destroyed upon aioManager destruction.
Reported-by: syzbot+ef6a588d0ce6059991d2@syzkaller.appspotmail.com
PiperOrigin-RevId: 347704347
|
|
We want to make the recvmsg syscall to the host regardless of if the dst is
empty or not so that:
- Host can populate the control messages if necessary.
- Host can return sender address.
- Host can return appropriate errors.
Earlier because we were using the IOSequence.CopyOutFrom() API, the usermem
package does not even call the Reader function if the destination is empty (as
an optimization).
PiperOrigin-RevId: 347684566
|
|
PiperOrigin-RevId: 347671070
|
|
PiperOrigin-RevId: 347660920
|
|
PiperOrigin-RevId: 347650354
|
|
packetEPs may get into a state that `len < cap`, casuing append() modifying the
original slice storage.
Reported-by: syzbot+978dd0e9c2600ab7a76b@syzkaller.appspotmail.com
PiperOrigin-RevId: 347634351
|
|
PiperOrigin-RevId: 347532687
|
|
There are surprisingly few syscall tests that run with hostinet. For example
running the following command only returns two results:
`bazel query test/syscalls:all | grep hostnet`
I think as a result, as our control messages evolved, hostinet was left
behind. Update it to support all control messages netstack supports.
This change also updates sentry's control message parsing logic to make it up to
date with all the control messages we support.
PiperOrigin-RevId: 347508892
|
|
PiperOrigin-RevId: 347437786
|
|
We should not assert that all resources are dropped after saving.
PiperOrigin-RevId: 347420131
|
|
SO_OOBINLINE option is set/get as boolean value, which is the same as linux.
As we currently do not support disabling this option, we always return it as
true.
PiperOrigin-RevId: 347413905
|
|
- Deep-copy pkt.Data and hold it instead of shallow-copy (vv.Clone).
This allows the pkt's backing array, which includes the header portion,
to be freed.
- Remove fragHeap. The fragments are now held in holes struct instead.
- Stop reserving the initial capacity of holes slice.
PiperOrigin-RevId: 347198744
|
|
Adds IPv6 extension header serializer and Hop by Hop options serializer.
Add RouterAlert option serializer and use it in MLD.
Fixed #4996
Startblock:
has LGTM from marinaciocea
and then
add reviewer ghanan
PiperOrigin-RevId: 347174537
|
|
PiperOrigin-RevId: 347091372
|
|
PiperOrigin-RevId: 347089828
|
|
This command takes instruction pointers from stdin and converts them into their
corresponding file names and line/column numbers in the runsc source code. The
inputs are not interpreted as actual addresses, but as synthetic values that are
exposed through /sys/kernel/debug/kcov. One can extract coverage information
from kcov and translate those values into locations in the source code by
running symbolize on the same runsc binary.
This will allow us to generate syzkaller coverage reports.
PiperOrigin-RevId: 347089624
|
|
We do not rely on error for getsockopt options(which have boolean values)
anymore. This will cause issue in sendmsg where we used to return error
for IPV6_V6Only option. Fix the panic by returning error (for sockets other
than TCP and UDP) if the address does not match the type(AF_INET/AF_INET6) of
the socket.
PiperOrigin-RevId: 347063838
|
|
PiperOrigin-RevId: 347047550
|
|
tcpip.ControlMessages can not contain Linux specific structures which makes it
painful to convert back and forth from Linux to tcpip back to Linux when passing
around control messages in hostinet and raw sockets.
Now we convert to the Linux version of the control message as soon as we are
out of tcpip.
PiperOrigin-RevId: 347027065
|
|
PiperOrigin-RevId: 346973338
|
|
PiperOrigin-RevId: 346923826
|
|
fdbased endpoint was enabling fragment reassembly on the host AF_PACKET socket
to ensure that fragments are delivered inorder to the right dispatcher. But this
prevents fragments from being delivered to gvisor at all and makes testing of
gvisor's fragment reassembly code impossible.
The potential impact from this is minimal since IP Fragmentation is not really
that prevelant and in cases where we do get fragments we may deliver the
fragment out of order to the TCP layer as multiple network dispatchers may
process the fragments and deliver a reassembled fragment after the next packet
has been delivered to the TCP endpoint. While not desirable I believe the impact
from this is minimal due to low prevalence of fragmentation.
Also removed PktType and Hatype fields when binding the socket as these are not
used when binding. Its just confusing to have them specified.
See: https://man7.org/linux/man-pages/man7/packet.7.html
"Fields used for binding are
sll_family (should be AF_PACKET), sll_protocol, and sll_ifindex."
Fixes #5055
PiperOrigin-RevId: 346919439
|
|
This change also considers interfaces and network endpoints enabled up
up to the point all work to disable them are complete. This was needed
so that protocols can perform shutdown work while being disabled (e.g.
sending a packet which requires the endpoint to be enabled to obtain a
source address).
Bug #4682, #4861
Fixes #4888
Startblock:
has LGTM from peterjohnston
and then
add reviewer brunodalbo
PiperOrigin-RevId: 346869702
|
|
Fixes #5004
PiperOrigin-RevId: 346643745
|
|
AtomicPtrMap is a generic concurrent map from arbitrary keys to arbitrary
pointer values.
Benchmarks:
name time/op
StoreDelete/RWMutexMap-12 335ns ± 1%
StoreDelete/SyncMap-12 705ns ± 3%
StoreDelete/AtomicPtrMap-12 287ns ± 4%
StoreDelete/AtomicPtrMapSharded-12 289ns ± 1%
LoadOrStoreDelete/RWMutexMap-12 342ns ± 2%
LoadOrStoreDelete/SyncMap-12 662ns ± 2%
LoadOrStoreDelete/AtomicPtrMap-12 290ns ± 7%
LoadOrStoreDelete/AtomicPtrMapSharded-12 293ns ± 2%
LookupPositive/RWMutexMap-12 101ns ±26%
LookupPositive/SyncMap-12 202ns ± 2%
LookupPositive/AtomicPtrMap-12 71.1ns ± 2%
LookupPositive/AtomicPtrMapSharded-12 73.2ns ± 1%
LookupNegative/RWMutexMap-12 119ns ± 1%
LookupNegative/SyncMap-12 154ns ± 1%
LookupNegative/AtomicPtrMap-12 84.7ns ± 3%
LookupNegative/AtomicPtrMapSharded-12 86.8ns ± 1%
Concurrent/FixedKeys_1PercentWrites_RWMutexMap-12 1.32µs ± 2%
Concurrent/FixedKeys_1PercentWrites_SyncMap-12 52.7ns ±10%
Concurrent/FixedKeys_1PercentWrites_AtomicPtrMap-12 31.8ns ±20%
Concurrent/FixedKeys_1PercentWrites_AtomicPtrMapSharded-12 24.0ns ±15%
Concurrent/FixedKeys_10PercentWrites_RWMutexMap-12 860ns ± 3%
Concurrent/FixedKeys_10PercentWrites_SyncMap-12 68.8ns ±20%
Concurrent/FixedKeys_10PercentWrites_AtomicPtrMap-12 98.6ns ± 7%
Concurrent/FixedKeys_10PercentWrites_AtomicPtrMapSharded-12 42.0ns ±25%
Concurrent/FixedKeys_50PercentWrites_RWMutexMap-12 1.17µs ± 3%
Concurrent/FixedKeys_50PercentWrites_SyncMap-12 136ns ±34%
Concurrent/FixedKeys_50PercentWrites_AtomicPtrMap-12 286ns ± 3%
Concurrent/FixedKeys_50PercentWrites_AtomicPtrMapSharded-12 115ns ±35%
Concurrent/ChangingKeys_1PercentWrites_RWMutexMap-12 1.27µs ± 2%
Concurrent/ChangingKeys_1PercentWrites_SyncMap-12 5.01µs ± 3%
Concurrent/ChangingKeys_1PercentWrites_AtomicPtrMap-12 38.1ns ± 3%
Concurrent/ChangingKeys_1PercentWrites_AtomicPtrMapSharded-12 22.6ns ± 2%
Concurrent/ChangingKeys_10PercentWrites_RWMutexMap-12 1.08µs ± 2%
Concurrent/ChangingKeys_10PercentWrites_SyncMap-12 5.97µs ± 1%
Concurrent/ChangingKeys_10PercentWrites_AtomicPtrMap-12 390ns ± 2%
Concurrent/ChangingKeys_10PercentWrites_AtomicPtrMapSharded-12 93.6ns ± 1%
Concurrent/ChangingKeys_50PercentWrites_RWMutexMap-12 1.77µs ± 2%
Concurrent/ChangingKeys_50PercentWrites_SyncMap-12 8.07µs ± 2%
Concurrent/ChangingKeys_50PercentWrites_AtomicPtrMap-12 1.61µs ± 2%
Concurrent/ChangingKeys_50PercentWrites_AtomicPtrMapSharded-12 386ns ± 1%
Updates #231
PiperOrigin-RevId: 346614776
|
|
Earlier we could not save tcpip.Error objects in structs because upon restore
the constant's address changes in netstack's error translation map and
translating the error would panic because the map is based on the address of the
tcpip.Error instead of the error itself.
Now I made that translations map use the error message as key instead of the
address. Added relevant synchronization mechanisms to protect the structure
and initialize it upon restore.
PiperOrigin-RevId: 346590485
|
|
The loopback interface will never have any neighbouring nodes so
advertising its interest in multicast groups is unnecessary.
Bug #4682, #4861
Startblock:
has LGTM from asfez
and then
add reviewer tamird
PiperOrigin-RevId: 346587604
|
|
startblock:
has LGTM from peterjohnston
and then
add reviewer ghanan,tamird
PiperOrigin-RevId: 346565589
|
|
PiperOrigin-RevId: 346496532
|
|
PiperOrigin-RevId: 346487763
|
|
Don't propagate arbitrary golang errors up from fusefs because errors
that don't map to an errno result in a sentry panic.
Reported-by: syzbot+697cb635346e456fddfc@syzkaller.appspotmail.com
PiperOrigin-RevId: 346220306
|
|
PiperOrigin-RevId: 346197760
|
|
Removes comment lines about MaxUnsolicitedReportDelay. This is already
documented in the comment for GenericMulticastProtocolOptions.
PiperOrigin-RevId: 346185053
|
|
PiperOrigin-RevId: 346143528
|
|
PiperOrigin-RevId: 346134026
|
|
openedMu has lock ordering violations. Most locks go through OpenedFlag(),
which is usually taken after renameMu and opMu. On the other hand, Tlopen takes
openedMu before renameMu and opMu (via safelyRead).
Resolving this violation is simple: just drop openedMu. The opened and
openFlags fields are already protected by opMu in most cases, renameMu (for
write) in one case (via safelyGlobal), and only in doWalk by neither.
This is a bit ugly because opMu is supposed to be a "semantic" lock, but it
works. I'm open to other suggestions.
Note that doWalk has a race condition where a FID may open after the open check
but before actually walking. This race existed before this change as well; it
is not clear if it is problematic.
PiperOrigin-RevId: 346108483
|
|
PiperOrigin-RevId: 346101076
|
|
With the recent changes db36d948fa63ce950d94a5e8e9ebc37956543661, we try
to balance the receive window advertisements between payload lengths vs
segment overhead length. This works fine when segment size are much
higher than the overhead, but not otherwise. In cases where the segment
length is smaller than the segment overhead, we may end up not
advertising zero receive window for long time and end up tail-dropping
segments. This is especially pronounced when application socket reads
are slow or stopped. In this change we do not grow the right edge of
the receive window for smaller segment sizes similar to Linux.
Also, we keep track of the socket buffer usage and let the window grow
if the application is actively reading data.
Fixes #4903
PiperOrigin-RevId: 345832012
|
|
Startblock:
has LGTM from asfez
and then
add reviewer tamird
PiperOrigin-RevId: 345815146
|
|
Fixes #4991
PiperOrigin-RevId: 345800333
|