Age | Commit message (Collapse) | Author |
|
|
|
PiperOrigin-RevId: 328839759
|
|
|
|
The existing implementation for {G,S}etSockOpt take arguments of an
empty interface type which all types (implicitly) implement; any
type may be passed to the functions.
This change introduces marker interfaces for socket options that may be
set or queried which socket option types implement to ensure that invalid
types are caught at compile time. Different interfaces are used to allow
the compiler to enforce read-only or set-only socket options.
Fixes #3714.
RELNOTES: n/a
PiperOrigin-RevId: 328832161
|
|
|
|
|
|
|
|
|
|
In an upcoming CL, socket option types are made to implement a marker
interface with pointer receivers. Since this results in calling methods
of an interface with a pointer, we incur an allocation when attempting
to get an Endpoint's last error with the current implementation.
When calling the method of an interface, the compiler is unable to
determine what the interface implementation does with the pointer
(since calling a method on an interface uses virtual dispatch at runtime
so the compiler does not know what the interface method will do) so it
allocates on the heap to be safe incase an implementation continues to
hold the pointer after the functioon returns (the reference escapes the
scope of the object).
In the example below, the compiler does not know what b.foo does with
the reference to a it allocates a on the heap as the reference to a may
escape the scope of a.
```
var a int
var b someInterface
b.foo(&a)
```
This change removes the opportunity for that allocation.
RELNOTES: n/a
PiperOrigin-RevId: 328796559
|
|
|
|
More implementation+testing to follow.
#3549.
PiperOrigin-RevId: 328770160
|
|
|
|
|
|
Use reflection and tags to provide automatic conversion from
Config to flags. This makes adding new flags less error-prone,
skips flags using default values (easier to read), and makes
tests correctly use default flag values for test Configs.
Updates #3494
PiperOrigin-RevId: 328662070
|
|
|
|
PiperOrigin-RevId: 328639254
|
|
|
|
|
|
This immediately revealed an escape analysis violation (!), where
the sync.Map was being used in a context that escapes were not
allowed. This is a relatively minor fix and is included.
PiperOrigin-RevId: 328611237
|
|
|
|
PiperOrigin-RevId: 328583461
|
|
|
|
|
|
This is needed to support the overlay opaque attribute.
PiperOrigin-RevId: 328552985
|
|
|
|
|
|
This uses the refs_vfs2 template in vfs2 as well as objects common to vfs1 and
vfs2. Note that vfs1-only refcounts are not replaced, since vfs1 will be deleted
soon anyway.
The following structs now use the new tool, with leak check enabled:
devpts:rootInode
fuse:inode
kernfs:Dentry
kernfs:dir
kernfs:readonlyDir
kernfs:StaticDirectory
proc:fdDirInode
proc:fdInfoDirInode
proc:subtasksInode
proc:taskInode
proc:tasksInode
vfs:FileDescription
vfs:MountNamespace
vfs:Filesystem
sys:dir
kernel:FSContext
kernel:ProcessGroup
kernel:Session
shm:Shm
mm:aioMappable
mm:SpecialMappable
transport:queue
And the following use the template, but because they currently are not leak
checked, a TODO is left instead of enabling leak check in this patch:
kernel:FDTable
tun:tunEndpoint
Updates #1486.
PiperOrigin-RevId: 328460377
|
|
|
|
This does not implement accepting or enforcing any size limit, which will be
more complex and has performance implications; it just returns a fixed non-zero
size.
Updates #1936
PiperOrigin-RevId: 328428588
|
|
|
|
In Linux, a kernel configuration is set that compiles the kernel with a
custom function that is called at the beginning of every basic block, which
updates the memory-mapped coverage information. The Go coverage tool does not
allow us to inject arbitrary instructions into basic blocks, but it does
provide data that we can convert to a kcov-like format and transfer them to
userspace through a memory mapping.
Note that this is not a strict implementation of kcov, which is especially
tricky to do because we do not have the same coverage tools available in Go
that that are available for the actual Linux kernel. In Linux, a kernel
configuration is set that compiles the kernel with a custom function that is
called at the beginning of every basic block to write program counters to the
kcov memory mapping. In Go, however, coverage tools only give us a count of
basic blocks as they are executed. Every time we return to userspace, we
collect the coverage information and write out PCs for each block that was
executed, providing userspace with the illusion that the kcov data is always
up to date. For convenience, we also generate a unique synthetic PC for each
block instead of using actual PCs. Finally, we do not provide thread-specific
coverage data (each kcov instance only contains PCs executed by the thread
owning it); instead, we will supply data for any file specified by --
instrumentation_filter.
Also, fix issue in nogo that was causing pkg/coverage:coverage_nogo
compilation to fail.
PiperOrigin-RevId: 328426526
|
|
|
|
Test:
- TestV4UnknownDestination
- TestV6UnknownDestination
PiperOrigin-RevId: 328424137
|
|
|
|
PiperOrigin-RevId: 328415633
|
|
|
|
|
|
PiperOrigin-RevId: 328410065
|
|
|
|
The actual values used for this field in Netstack are actually EtherType values
of the protocol in an Ethernet frame. Eg. header.IPv4ProtocolNumber is 0x0800
and not the number of the IPv4 Protocol Number itself which is 4. Similarly
header.IPv6ProtocolNumber is set to 0x86DD whereas the IPv6 protocol number is
41.
See:
- https://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.xhtml (For EtherType)
- https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml (For ProtocolNumbers)
PiperOrigin-RevId: 328407293
|
|
|
|
|
|
iptables sockopts were kludged into an unnecessary check, this properly
relegates them to the {get,set}SockOptIP functions.
PiperOrigin-RevId: 328395135
|
|
|
|
|
|
Updates #3374
PiperOrigin-RevId: 328378700
|
|
|
|
PiperOrigin-RevId: 328374775
|
|
|
|
This change adds an option to replace the current implementation of ARP through
linkAddrCache, with an implementation of NUD through neighborCache. Switching
to using NUD for both ARP and NDP is beneficial for the reasons described by
RFC 4861 Section 3.1:
"[Using NUD] significantly improves the robustness of packet delivery in the
presence of failing routers, partially failing or partitioned links, or nodes
that change their link-layer addresses. For instance, mobile nodes can move
off-link without losing any connectivity due to stale ARP caches."
"Unlike ARP, Neighbor Unreachability Detection detects half-link failures and
avoids sending traffic to neighbors with which two-way connectivity is
absent."
Along with these changes exposes the API for querying and operating the
neighbor cache. Operations include:
- Create a static entry
- List all entries
- Delete all entries
- Remove an entry by address
This also exposes the API to change the NUD protocol constants on a per-NIC
basis to allow Neighbor Discovery to operate over links with widely varying
performance characteristics. See [RFC 4861 Section 10][1] for the list of
constants.
Finally, an API for subscribing to NUD state changes is exposed through
NUDDispatcher. See [RFC 4861 Appendix C][3] for the list of edges.
Tests:
pkg/tcpip/network/arp:arp_test
+ TestDirectRequest
pkg/tcpip/network/ipv6:ipv6_test
+ TestLinkResolution
+ TestNDPValidation
+ TestNeighorAdvertisementWithTargetLinkLayerOption
+ TestNeighorSolicitationResponse
+ TestNeighorSolicitationWithSourceLinkLayerOption
+ TestRouterAdvertValidation
pkg/tcpip/stack:stack_test
+ TestCacheWaker
+ TestForwardingWithFakeResolver
+ TestForwardingWithFakeResolverManyPackets
+ TestForwardingWithFakeResolverManyResolutions
+ TestForwardingWithFakeResolverPartialTimeout
+ TestForwardingWithFakeResolverTwoPackets
+ TestIPv6SourceAddressSelectionScopeAndSameAddress
[1]: https://tools.ietf.org/html/rfc4861#section-10
[2]: https://tools.ietf.org/html/rfc4861#appendix-C
Fixes #1889
Fixes #1894
Fixes #1895
Fixes #1947
Fixes #1948
Fixes #1949
Fixes #1950
PiperOrigin-RevId: 328365034
|