Age | Commit message (Collapse) | Author |
|
Support is limited to the functionality that exists in VFS1.
Updates #2923 #1035
PiperOrigin-RevId: 317981417
|
|
Events were only skipped on parent directories after their children were
unlinked; events on the unlinked file itself need to be skipped as well.
As a result, all Watches.Notify() calls need to know whether the dentry where
the call came from was unlinked.
Updates #1479.
PiperOrigin-RevId: 317979476
|
|
Because there is no inode structure stored in the sandbox, inotify watches
must be held on the dentry. This would be an issue in the presence of hard
links, where multiple dentries would need to share the same set of watches,
but in VFS2, we do not support the internal creation of hard links on gofer
fs. As a result, we make the assumption that every dentry corresponds to a
unique inode.
Furthermore, dentries can be cached and then evicted, even if the underlying
file has not be deleted. We must prevent this from occurring if there are any
watches that would be lost. Note that if the dentry was deleted or invalidated
(d.vfsd.IsDead()), we should still destroy it along with its watches.
Additionally, when a dentry’s last watch is removed, we cache it if it also
has zero references. This way, the dentry can eventually be evicted from
memory if it is no longer needed. This is accomplished with a new dentry
method, OnZeroWatches(), which is called by Inotify.RmWatch and
Inotify.Release. Note that it must be called after all inotify locks are
released to avoid violating lock order. Stress tests are added to make sure
that inotify operations don't deadlock with gofer.OnZeroWatches.
Updates #1479.
PiperOrigin-RevId: 317958034
|
|
It preserves the same functionality (almost none) as in VFS1.
Updates #2923 #1035
PiperOrigin-RevId: 317943522
|
|
PiperOrigin-RevId: 317933650
|
|
PiperOrigin-RevId: 317796028
|
|
Updates #2923.
PiperOrigin-RevId: 317700049
|
|
... and unify logic for detached netsted endpoints.
sniffer.go caused crashes if a packet delivery is attempted when the dispatcher
is nil.
Extracted the endpoint nesting logic into a common composable type so it can be
used by the Fuchsia Netstack (the pattern is widespread there).
PiperOrigin-RevId: 317682842
|
|
Correct behavior when given zero size arguments and trying to set user.* xattrs
on files other than regular files or directories.
Updates #2923.
PiperOrigin-RevId: 317590409
|
|
- Return ENOENT if target path is empty.
- Make sure open(2) with O_CREAT|O_EXCL returns EEXIST when necessary.
- Correctly update atime in tmpfs using touchATime().
Updates #2923.
PiperOrigin-RevId: 317382655
|
|
Make proc/self/fd iteration work properly. Also, the comment on
kernfs.Inode.IterDirents did not accurately reflect how parameters should be
used/were used in kernfs.Inode impls other than fdDir.
Updates #2923.
PiperOrigin-RevId: 317370325
|
|
Like vfs1, we have a trivial implementation that ignores all valid advice.
Updates #2923.
PiperOrigin-RevId: 317349505
|
|
Test:
- TestIncrementChecksumErrors
Fixes #2943
PiperOrigin-RevId: 317348158
|
|
Check for unsupported flags, and silently support RWF_HIPRI by doing nothing.
From pkg/abi/linux/file.go: "gVisor does not implement the RWF_HIPRI feature,
but the flag is accepted as a valid flag argument for preadv2/pwritev2."
Updates #2923.
PiperOrigin-RevId: 317330631
|
|
Updates #2923.
PiperOrigin-RevId: 317314460
|
|
Updates #2923.
PiperOrigin-RevId: 317298186
|
|
Always check if a synthetic file already exists at a location before creating a
file there, and do not try to delete synthetic gofer files from the remote fs.
This fixes runsc_ptrace socket tests that create/unlink synthetic, named socket
files.
Updates #2923.
PiperOrigin-RevId: 317293648
|
|
Updates #2923.
PiperOrigin-RevId: 317246916
|
|
It accesses e.receiver which is protected by the endpoint lock.
WARNING: DATA RACE
Write at 0x00c0006aa2b8 by goroutine 189:
pkg/sentry/socket/unix/transport.(*connectionedEndpoint).Connect.func1()
pkg/sentry/socket/unix/transport/connectioned.go:359 +0x50
pkg/sentry/socket/unix/transport.(*connectionedEndpoint).BidirectionalConnect()
pkg/sentry/socket/unix/transport/connectioned.go:327 +0xa3c
pkg/sentry/socket/unix/transport.(*connectionedEndpoint).Connect()
pkg/sentry/socket/unix/transport/connectioned.go:363 +0xca
pkg/sentry/socket/unix.(*socketOpsCommon).Connect()
pkg/sentry/socket/unix/unix.go:420 +0x13a
pkg/sentry/socket/unix.(*SocketOperations).Connect()
<autogenerated>:1 +0x78
pkg/sentry/syscalls/linux.Connect()
pkg/sentry/syscalls/linux/sys_socket.go:286 +0x251
Previous read at 0x00c0006aa2b8 by goroutine 270:
pkg/sentry/socket/unix/transport.(*baseEndpoint).Connected()
pkg/sentry/socket/unix/transport/unix.go:789 +0x42
pkg/sentry/socket/unix/transport.(*connectionedEndpoint).State()
pkg/sentry/socket/unix/transport/connectioned.go:479 +0x2f
pkg/sentry/socket/unix.(*socketOpsCommon).State()
pkg/sentry/socket/unix/unix.go:714 +0xc3e
pkg/sentry/socket/unix.(*socketOpsCommon).SendMsg()
pkg/sentry/socket/unix/unix.go:466 +0xc44
pkg/sentry/socket/unix.(*SocketOperations).SendMsg()
<autogenerated>:1 +0x173
pkg/sentry/syscalls/linux.sendTo()
pkg/sentry/syscalls/linux/sys_socket.go:1121 +0x4c5
pkg/sentry/syscalls/linux.SendTo()
pkg/sentry/syscalls/linux/sys_socket.go:1134 +0x87
Reported-by: syzbot+c2be37eedc672ed59a86@syzkaller.appspotmail.com
PiperOrigin-RevId: 317236996
|
|
Users that never set iptables rules shouldn't incur the iptables performance
cost. Suggested by Ian (@iangudger).
PiperOrigin-RevId: 317232921
|
|
Metadata was useful for debugging and safety, but enough tests exist that we
should see failures when (de)serialization is broken. It made stack
initialization more cumbersome and it's also getting in the way of ip6tables.
PiperOrigin-RevId: 317210653
|
|
PiperOrigin-RevId: 317180925
|
|
Updates #2972
PiperOrigin-RevId: 317113059
|
|
Updates #173,#6
Fixes #2888
PiperOrigin-RevId: 317087652
|
|
When a tcp.timer or tcpip.Route is no longer used, clean up its
resources so that unused memory may be released.
PiperOrigin-RevId: 317046582
|
|
Updates #1035, #1199
PiperOrigin-RevId: 317028108
|
|
Separate mount configuration from links and move it to
RunOpts, like the other options.
PiperOrigin-RevId: 317010158
|
|
... to help reduce flakes.
When waiting for an event to occur, use a timeout of 10s. When waiting
for an event to not occur, use a timeout of 1s.
Test: Ran test locally w/ run count of 1000 with and without gotsan.
PiperOrigin-RevId: 316998128
|
|
PiperOrigin-RevId: 316973783
|
|
Updates #2972
PiperOrigin-RevId: 316942245
|
|
Simplify the canMap check. We do not have plans to allow mmap for anything
beyond regular files, so we can just inline canMap() as a simple file mode
check.
Updates #1672.
PiperOrigin-RevId: 316929654
|
|
Ensure that CurrentConnected stat is updated on any errors and cleanups
during connected state processing.
Fixes #2968
PiperOrigin-RevId: 316919426
|
|
- Change FileDescriptionImpl Lock/UnlockPOSIX signature to
take {start,length,whence}, so the correct offset can be
calculated in the implementations.
- Create PosixLocker interface to make it possible to share
the same locking code from different implementations.
Closes #1480
PiperOrigin-RevId: 316910286
|
|
There are 3 types of asynchronous exceptions on Arm64: sError, IRQ, FIQ.
In this case, we use the sError injection method in bluepillHandler to force the guest to quit.
So that the test case of "TestBounce" can be passed on Arm64.
Signed-off-by: Bin Lu <bin.lu@arm.com>
|
|
PiperOrigin-RevId: 316778032
|
|
PiperOrigin-RevId: 316767969
|
|
In order to make sure all aio goroutines have stopped during S/R, a new
WaitGroup was added to TaskSet, analagous to runningGoroutines. This WaitGroup
is incremented with each aio goroutine, and waited on during kernel.Pause.
The old VFS1 aio code was changed to use this new WaitGroup, rather than
fs.Async. The only uses of fs.Async are now inode and mount Release operations,
which do not call fs.Async recursively. This fixes a lock-ordering violation
that can cause deadlocks.
Updates #1035.
PiperOrigin-RevId: 316689380
|
|
PiperOrigin-RevId: 316627764
|
|
In passive open cases, we transition to Established state after
initializing endpoint's sender and receiver. With this we lose out
on any updates coming from the ACK that completes the handshake.
This change ensures that we uniformly transition to Established in all
cases and does minor cleanups.
Fixes #2938
PiperOrigin-RevId: 316567014
|
|
I am not really sure what the point of this is, but someone filed a bug about
it, so I assume something relies on it.
PiperOrigin-RevId: 316225127
|
|
PiperOrigin-RevId: 316148074
|
|
Fixes #701
PiperOrigin-RevId: 316025635
|
|
Major differences from existing overlay filesystems:
- Linux allows lower layers in an overlay to require revalidation, but not the
upper layer. VFS1 allows the upper layer in an overlay to require
revalidation, but not the lower layer. VFS2 does not allow any layers to
require revalidation. (Now that vfs.MkdirOptions.ForSyntheticMountpoint
exists, no uses of overlay in VFS1 are believed to require upper layer
revalidation; in particular, the requirement that the upper layer support the
creation of "trusted." extended attributes for whiteouts effectively required
the upper filesystem to be tmpfs in most cases.)
- Like VFS1, but unlike Linux, VFS2 overlay does not attempt to make mutations
of the upper layer atomic using a working directory and features like
RENAME_WHITEOUT. (This may change in the future, since not having a working
directory makes error recovery for some operations, e.g. rmdir, particularly
painful.)
- Like Linux, but unlike VFS1, VFS2 represents whiteouts using character
devices with rdev == 0; the equivalent of the whiteout attribute on
directories is xattr trusted.overlay.opaque = "y"; and there is no equivalent
to the whiteout attribute on non-directories since non-directories are never
merged with lower layers.
- Device and inode numbers work as follows:
- In Linux, modulo the xino feature and a special case for when all layers
are the same filesystem:
- Directories use the overlay filesystem's device number and an
ephemeral inode number assigned by the overlay.
- Non-directories that have been copied up use the device and inode
number assigned by the upper filesystem.
- Non-directories that have not been copied up use a per-(overlay,
layer)-pair device number and the inode number assigned by the lower
filesystem.
- In VFS1, device and inode numbers always come from the lower layer unless
"whited out"; this has the adverse effect of requiring interaction with
the lower filesystem even for non-directory files that exist on the upper
layer.
- In VFS2, device and inode numbers are assigned as in Linux, except that
xino and the samefs special case are not supported.
- Like Linux, but unlike VFS1, VFS2 does not attempt to maintain memory mapping
coherence across copy-up. (This may have to change in the future, as users
may be dependent on this property.)
- Like Linux, but unlike VFS1, VFS2 uses the overlayfs mounter's credentials
when interacting with the overlay's layers, rather than the caller's.
- Like Linux, but unlike VFS1, VFS2 permits multiple lower layers in an
overlay.
- Like Linux, but unlike VFS1, VFS2's overlay filesystem is
application-mountable.
Updates #1199
PiperOrigin-RevId: 316019067
|
|
Tentative addresses should not be used when finding a route. This change
fixes a bug where a tentative address may have been used.
Test: stack_test.TestDADResolve
PiperOrigin-RevId: 315997624
|
|
PiperOrigin-RevId: 315991648
|
|
During inititalization inode struct was copied around, but
it isn't great pratice to copy it around since it contains
ref count and sync.Mutex.
Updates #1480
PiperOrigin-RevId: 315983788
|
|
A method is added to generate a merkle tree for data, and store the
generated tree in the output.
PiperOrigin-RevId: 315966571
|
|
PiperOrigin-RevId: 315959279
|
|
This change creates a merkletree package which will be used in the future
for an implementation of file system API.
PiperOrigin-RevId: 315952451
|
|
On UDP sockets, SO_REUSEADDR allows multiple sockets to bind to the same
address, but only delivers packets to the most recently bound socket. This
differs from the behavior of SO_REUSEADDR on TCP sockets. SO_REUSEADDR for TCP
sockets will likely need an almost completely independent implementation.
SO_REUSEADDR has some odd interactions with the similar SO_REUSEPORT. These
interactions are tested fairly extensively and all but one particularly odd
one (that honestly seems like a bug) behave the same on gVisor and Linux.
PiperOrigin-RevId: 315844832
|