Age | Commit message (Collapse) | Author |
|
PiperOrigin-RevId: 216733414
Change-Id: I33cd3eb818f0c39717d6656fcdfff6050b37ebb0
|
|
This is a defense-in-depth measure. If the sentry is compromised, this prevents
system call injection to the stubs. There is some complexity with respect to
ptrace and seccomp interactions, so this protection is not really available
for kernel versions < 4.8; this is detected dynamically.
Note that this also solves the vsyscall emulation issue by adding in
appropriate trapping for those system calls. It does mean that a compromised
sentry could theoretically inject these into the stub (ignoring the trap and
resume, thereby allowing execution), but they are harmless.
PiperOrigin-RevId: 216647581
Change-Id: Id06c232cbac1f9489b1803ec97f83097fcba8eb8
|
|
Change-Id: I1fb9f5b47a264a7617912f6f56f995f3c4c5e578
PiperOrigin-RevId: 216591484
|
|
Currently, in the face of FileMem fragmentation and a large sendmsg or
recvmsg call, host sockets may pass > 1024 iovecs to the host, which
will immediately cause the host to return EMSGSIZE.
When we detect this case, use a single intermediate buffer to pass to
the kernel, copying to/from the src/dst buffer.
To avoid creating unbounded intermediate buffers, enforce message size
checks and truncation w.r.t. the send buffer size. The same
functionality is added to netstack unix sockets for feature parity.
PiperOrigin-RevId: 216590198
Change-Id: I719a32e71c7b1098d5097f35e6daf7dd5190eff7
|
|
PiperOrigin-RevId: 216554791
Change-Id: Ia6b7a2e6eaad80a81b2a8f2e3241e93ebc2bda35
|
|
PiperOrigin-RevId: 216431260
Change-Id: Ia6e5c8d506940148d10ff2884cf4440f470e5820
|
|
Also properly add padding after Procs in the linux.Sysinfo
structure. This will be implicitly padded to 64bits so we
need to do the same.
PiperOrigin-RevId: 216372907
Change-Id: I6eb6a27800da61d8f7b7b6e87bf0391a48fdb475
|
|
We accidentally set the wrong maximum. I've also added PATH_MAX and
NAME_MAX to the linux abi package.
PiperOrigin-RevId: 216221311
Change-Id: I44805fcf21508831809692184a0eba4cee469633
|
|
- Shared futex objects on shared mappings are represented by Mappable +
offset, analogous to Linux's use of inode + offset. Add type
futex.Key, and change the futex.Manager bucket API to use futex.Keys
instead of addresses.
- Extend the futex.Checker interface to be able to return Keys for
memory mappings. It returns Keys rather than just mappings because
whether the address or the target of the mapping is used in the Key
depends on whether the mapping is MAP_SHARED or MAP_PRIVATE; this
matters because using mapping target for a futex on a MAP_PRIVATE
mapping causes it to stop working across COW-breaking.
- futex.Manager.WaitComplete depends on atomic updates to
futex.Waiter.addr to determine when it has locked the right bucket,
which is much less straightforward for struct futex.Waiter.key. Switch
to an atomically-accessed futex.Waiter.bucket pointer.
- futex.Manager.Wake now needs to take a futex.Checker to resolve
addresses for shared futexes. CLONE_CHILD_CLEARTID requires the exit
path to perform a shared futex wakeup (Linux:
kernel/fork.c:mm_release() => sys_futex(tsk->clear_child_tid,
FUTEX_WAKE, ...)). This is a problem because futexChecker is in the
syscalls/linux package. Move it to kernel.
PiperOrigin-RevId: 216207039
Change-Id: I708d68e2d1f47e526d9afd95e7fed410c84afccf
|
|
PiperOrigin-RevId: 215674589
Change-Id: I4f8871b64c570dc6da448d2fe351cec8a406efeb
|
|
PiperOrigin-RevId: 215658757
Change-Id: If63b33293f3e53a7f607ae72daa79e2b7ef6fcfd
|
|
PiperOrigin-RevId: 215655197
Change-Id: I668b1bc7c29daaf2999f8f759138bcbb09c4de6f
|
|
PiperOrigin-RevId: 215620949
Change-Id: I519da4b44386d950443e5784fb8c48ff9a36c5d3
|
|
PiperOrigin-RevId: 215489101
Change-Id: Iaf96aa8edb1101b70548030c62995841215237d9
|
|
Terminal support in runsc relies on host tty file descriptors that are imported
into the sandbox. Application tty ioctls are sent directly to the host fd.
However, those host tty ioctls are associated in the host kernel with a host
process (in this case runsc), and the host kernel intercepts job control
characters like ^C and send signals to the host process. Thus, typing ^C into a
"runsc exec" shell will send a SIGINT to the runsc process.
This change makes "runsc exec" handle all signals, and forward them into the
sandbox via the "ContainerSignal" urpc method. Since the "runsc exec" is
associated with a particular container process in the sandbox, the signal must
be associated with the same container process.
One big difficulty is that the signal should not necessarily be sent to the
sandbox process started by "exec", but instead must be sent to the foreground
process group for the tty. For example, we may exec "bash", and from bash call
"sleep 100". A ^C at this point should SIGINT sleep, not bash.
To handle this, tty files inside the sandbox must keep track of their
foreground process group, which is set/get via ioctls. When an incoming
ContainerSignal urpc comes in, we look up the foreground process group via the
tty file. Unfortunately, this means we have to expose and cache the tty file in
the Loader.
Note that "runsc exec" now handles signals properly, but "runs run" does not.
That will come in a later CL, as this one is complex enough already.
Example:
root@:/usr/local/apache2# sleep 100
^C
root@:/usr/local/apache2# sleep 100
^Z
[1]+ Stopped sleep 100
root@:/usr/local/apache2# fg
sleep 100
^C
root@:/usr/local/apache2#
PiperOrigin-RevId: 215334554
Change-Id: I53cdce39653027908510a5ba8d08c49f9cf24f39
|
|
PiperOrigin-RevId: 215278262
Change-Id: Icd10384c99802be6097be938196044386441e282
|
|
There was a race where we checked task.Parent() != nil, and then later called
task.Parent() again, assuming that it is not nil. If the task is exiting, the
parent may have been set to nil in between the two calls, causing a panic.
This CL changes the code to only call task.Parent() once.
PiperOrigin-RevId: 215274456
Change-Id: Ib5a537312c917773265ec72016014f7bc59a5f59
|
|
PiperOrigin-RevId: 214975659
Change-Id: I7bd31a2c54f03ff52203109da312e4206701c44c
|
|
host.endpoint already has the check, but it is missing from
host.ConnectedEndpoint.
PiperOrigin-RevId: 214962762
Change-Id: I88bb13a5c5871775e4e7bf2608433df8a3d348e6
|
|
Previously, if address resolution for UDP or Ping sockets required sending
packets using Write in Transport layer, Resolve would return ErrWouldBlock
and Write would return ErrNoLinkAddress. Meanwhile startAddressResolution
would run in background. Further calls to Write using same address would also
return ErrNoLinkAddress until resolution has been completed successfully.
Since Write is not allowed to block and System Calls need to be
interruptible in System Call layer, the caller to Write is responsible for
blocking upon return of ErrWouldBlock.
Now, when startAddressResolution is called a notification channel for
the completion of the address resolution is returned.
The channel will traverse up to the calling function of Write as well as
ErrNoLinkAddress. Once address resolution is complete (success or not) the
channel is closed. The caller would call Write again to send packets and
check if address resolution was compeleted successfully or not.
Fixes google/gvisor#5
Change-Id: Idafaf31982bee1915ca084da39ae7bd468cebd93
PiperOrigin-RevId: 214962200
|
|
We already forward TCSETS and TCSETSW. TCSETSF is roughly equivalent but
discards pending input.
The filters were relaxed to allow host ioctls with TCSETSF argument.
This fixes programs like "passwd" that prevent user input from being displayed
on the terminal.
Before:
root@b8a0240fc836:/# passwd
Enter new UNIX password: 123
Retype new UNIX password: 123
passwd: password updated successfully
After:
root@ae6f5dabe402:/# passwd
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
PiperOrigin-RevId: 214869788
Change-Id: I31b4d1373c1388f7b51d0f2f45ce40aa8e8b0b58
|
|
In order to implement kill --all correctly, the Sentry needs
to track all tasks that belong to a given container. This change
introduces ContainerID to the task, that gets inherited by all
children. 'kill --all' then iterates over all tasks comparing the
ContainerID field to find all processes that need to be signalled.
PiperOrigin-RevId: 214841768
Change-Id: I693b2374be8692d88cc441ef13a0ae34abf73ac6
|
|
The //go:linkname directive requires the presence of
assembly files in the package. Even an empty file will do.
There was an empty assembly file commit_arm64.s, but
that is limited to GOARCH=arm64. Renaming to empty.s will
remove the unnecessary build constraint and allow building
netstack for other architectures than amd64 and arm64.
Without this, building directly with go (not bazel)
for e.g., GOARCH=arm gives:
sleep/sleep_unsafe.go:88:6: missing function body
sleep/sleep_unsafe.go:91:6: missing function body
Change-Id: I29d1d13e1ff31506a174d4595b8cd57fa58bf52b
PiperOrigin-RevId: 214820299
|
|
PiperOrigin-RevId: 214798278
Change-Id: Id59d1ceb35037cda0689d3a1c4844e96c6957615
|
|
Old code was returning ID of the thread that created
the child process. It should be returning the ID of
the parent process instead.
PiperOrigin-RevId: 214720910
Change-Id: I95715c535bcf468ecf1ae771cccd04a4cd345b36
|
|
There is a subtle bug that is the result of two changes made when upstreaming
ICMPv6 support from Fuchsia:
1) ipv6.endpoint.WritePacket writes the local address it was initialized with,
rather than the provided route's local address
2) ipv6.endpoint.handleICMP doesn't set its route's local address to the ICMP
target address before writing the response
The result is that the ICMP response erroneously uses the target ipv6 address
(rather than icmp) as its source address in the response. When trying to debug
this by fixing (2), we ran into problems with bad ipv6 checksums because (1)
didn't respect the local address of the route being passed to it.
This fixes both problems.
PiperOrigin-RevId: 214650822
Change-Id: Ib6148bf432e6428d760ef9da35faef8e4b610d69
|
|
This is useful for Fuchsia.
PiperOrigin-RevId: 214619681
Change-Id: If5a60dd82365c2eae51a12bbc819e5aae8c76ee9
|
|
PiperOrigin-RevId: 214073949
Change-Id: I8fab916cd77362c13dac2c9dcf2ecc1710d87a5e
|
|
PiperOrigin-RevId: 214040901
Change-Id: I74d79497a053da3624921ad2b7c5193ca4a87942
|
|
PiperOrigin-RevId: 214039349
Change-Id: Ia7d09c5f85eddd1e5634f3c21b0bd60b10be6bd2
|
|
...by increasing the allotted timeout and using direct comparison rather than
reflect.DeepEqual (which should be faster).
PiperOrigin-RevId: 214027024
Change-Id: I0a2690e65c7e14b4cc118c7312dbbf5267dc78bc
|
|
PiperOrigin-RevId: 214023383
Change-Id: I5a7572f949840fb68a3ffb7342e6a3524bd00864
|
|
tcp.endpoint.hardError is protected by tcp.endpoint.mu.
PiperOrigin-RevId: 213730698
Change-Id: I4e4f322ac272b145b500b1a652fbee0c7b985be2
|
|
This allows a NetworkDispatcher to implement transparent bridging,
assuming all implementations of LinkEndpoint.WritePacket call eth.Encode
with header.EthernetFields.SrcAddr set to the passed
Route.LocalLinkAddress, if it is provided.
PiperOrigin-RevId: 213686651
Change-Id: I446a4ac070970202f0724ef796ff1056ae4dd72a
|
|
From RFC7323#Section-4
The [RFC6298] RTT estimator has weighting factors, alpha and beta, based on an
implicit assumption that at most one RTTM will be sampled per RTT. When
multiple RTTMs per RTT are available to update the RTT estimator, an
implementation SHOULD try to adhere to the spirit of the history specified in
[RFC6298]. An implementation suggestion is detailed in Appendix G.
From RFC7323#appendix-G
Appendix G. RTO Calculation Modification
Taking multiple RTT samples per window would shorten the history calculated
by the RTO mechanism in [RFC6298], and the below algorithm aims to maintain a
similar history as originally intended by [RFC6298].
It is roughly known how many samples a congestion window worth of data will
yield, not accounting for ACK compression, and ACK losses. Such events will
result in more history of the path being reflected in the final value for
RTO, and are uncritical. This modification will ensure that a similar amount
of time is taken into account for the RTO estimation, regardless of how many
samples are taken per window:
ExpectedSamples = ceiling(FlightSize / (SMSS * 2))
alpha' = alpha / ExpectedSamples
beta' = beta / ExpectedSamples
Note that the factor 2 in ExpectedSamples is due to "Delayed ACKs".
Instead of using alpha and beta in the algorithm of [RFC6298], use alpha' and
beta' instead:
RTTVAR <- (1 - beta') * RTTVAR + beta' * |SRTT - R'|
SRTT <- (1 - alpha') * SRTT + alpha' * R'
(for each sample R')
PiperOrigin-RevId: 213644795
Change-Id: I52278b703540408938a8edb8c38be97b37f4a10e
|
|
If we have an overlay file whose corresponding Dirent is frozen, then we should
not bother calling Readdir on the upper or lower files, since DirentReaddir
will calculate children based on the frozen Dirent tree.
A test was added that fails without this change.
PiperOrigin-RevId: 213531215
Change-Id: I4d6c98f1416541a476a34418f664ba58f936a81d
|
|
PiperOrigin-RevId: 213519378
Change-Id: Iffdb987da3a7209a297ea2df171d2ae5fa9b2b34
|
|
PiperOrigin-RevId: 213481363
Change-Id: I8150ea20cebeb207afe031ed146244de9209e745
|
|
Updates #100
PiperOrigin-RevId: 213414821
Change-Id: I90c2e6c18c54a6afcd7ad6f409f670aa31577d37
|
|
panic() during init() can be hard to debug.
Updates #100
PiperOrigin-RevId: 213391932
Change-Id: Ic103f1981c5b48f1e12da3b42e696e84ffac02a9
|
|
PiperOrigin-RevId: 213387851
Change-Id: Icc6850761bc11afd0525f34863acd77584155140
|
|
This makes `runsc wait` behave more like waitpid()/wait4() in that:
- Once a process has run to completion, you can wait on it and get its exit
code.
- Processes not waited on will consume memory (like a zombie process)
PiperOrigin-RevId: 213358916
Change-Id: I5b5eca41ce71eea68e447380df8c38361a4d1558
|
|
PiperOrigin-RevId: 213328293
Change-Id: I4164133e6f709ecdb89ffbb5f7df3324c273860a
|
|
This was previously broken in 212917409, resulting in "missing function body"
compilation errors.
PiperOrigin-RevId: 213323695
Change-Id: I32a95b76a1c73fd731f223062ec022318b979bd4
|
|
PiperOrigin-RevId: 213323501
Change-Id: I0996ddbdcf097588745efe35481085d42dbaf446
|
|
PiperOrigin-RevId: 213315267
Change-Id: I7562bcd81fb22e90aa9c7dd9eeb94803fcb8c5af
|
|
runApp.execute -> Task.SendSignal -> sendSignalLocked -> sendSignalTimerLocked
-> pendingSignals.enqueue assumes that it owns the arch.SignalInfo returned
from platform.Context.Switch.
On the other hand, ptrace.context.Switch assumes that it owns the returned
SignalInfo and can safely reuse it on the next call to Switch. The KVM platform
always returns a unique SignalInfo.
This becomes a problem when the returned signal is not immediately delivered,
allowing a future signal in Switch to change the previous pending SignalInfo.
This is noticeable in #38 when external SIGINTs are delivered from the PTY
slave FD. Note that the ptrace stubs are in the same process group as the
sentry, so they are eligible to receive the PTY signals. This should probably
change, but is not the only possible cause of this bug.
Updates #38
Original change by newmanwang <wcs1011@gmail.com>, updated by Michael Pratt
<mpratt@google.com>.
Change-Id: I5383840272309df70a29f67b25e8221f933622cd
PiperOrigin-RevId: 213071072
|
|
It is the same as buffer.Prependable.View.
PiperOrigin-RevId: 213064166
Change-Id: Ib33b8a2c4da864209d9a0be0a1c113be10b520d3
|
|
PiperOrigin-RevId: 213058623
Change-Id: I522598c655d633b9330990951ff1c54d1023ec29
|
|
PiperOrigin-RevId: 213053370
Change-Id: I60ea89572b4fca53fd126c870fcbde74fcf52562
|