Age | Commit message (Collapse) | Author |
|
|
|
It is quite legal to send from the ANY address (it is required for
DHCP). I can't figure out why the broadcast address was included here,
so removing that as well.
PiperOrigin-RevId: 275541954
|
|
|
|
NDP Neighbor Solicitations sent during Duplicate Address Detection must have an
IP hop limit of 255, as all NDP Neighbor Solicitations should have.
Test: Test that DAD messages have the IPv6 hop limit field set to 255.
PiperOrigin-RevId: 275321680
|
|
|
|
This change adds support for Duplicate Address Detection on IPv6 addresses
as defined by RFC 4862 section 5.4.
Note, this change will not break existing uses of netstack as the default
configuration for the stack options is set in such a way that DAD will not be
performed. See `stack.Options` and `stack.NDPConfigurations` for more details.
Tests: Tests to make sure that the DAD process properly resolves or fails.
That is, tests make sure that DAD resolves only if:
- No other node is performing DAD for the same address
- No other node owns the same address
PiperOrigin-RevId: 275189471
|
|
|
|
Reassembly can fail due to an invalid sequence of fragments
being received. eg. Multiple fragments with same id which
claim to be the last one by setting the more flag to 0 etc.
It's safer to just drop the reassembler and increment a metric
than to panic when reassembly fails.
PiperOrigin-RevId: 274920901
|
|
|
|
...and do not populate link address cache at dispatch. This partially
reverts 313c767b0001bf6271405f1b765b60a334d6e911, which caused malformed
packets (e.g. NDP Neighbor Adverts with incorrect hop limit values) to
populate the address cache. In particular, this masked a bug that was
introduced to the Neighbor Advert generation code in
7c1587e3401a010d1865df61dbaf117c77dd062e.
PiperOrigin-RevId: 274865182
|
|
Netstack has its own stats, we use this to fill /proc/net/snmp.
Note that some metrics are not recorded in Netstack, which will be shown
as 0 in the proc file.
Signed-off-by: Jianfeng Tan <henry.tjf@antfin.com>
Change-Id: Ie0089184507d16f49bc0057b4b0482094417ebe1
|
|
Signed-off-by: Jianfeng Tan <henry.tjf@antfin.com>
|
|
|
|
PiperOrigin-RevId: 274700093
|
|
PiperOrigin-RevId: 274672346
|
|
|
|
PiperOrigin-RevId: 274638272
|
|
|
|
Strengthen the header.IPv4.IsValid check to correctly check
for IHL/TotalLength fields. Also add a check to make sure
fragmentOffsets + size of the fragment do not cause a wrap
around for the end of the fragment.
PiperOrigin-RevId: 274049313
|
|
|
|
PiperOrigin-RevId: 273861936
|
|
|
|
|
|
Also change the default TTL to 64 to match Linux.
PiperOrigin-RevId: 273430341
|
|
|
|
The behavior for sending and receiving local broadcast (255.255.255.255)
traffic is as follows:
Outgoing
--------
* A broadcast packet sent on a socket that is bound to an interface goes out
that interface
* A broadcast packet sent on an unbound socket follows the route table to
select the outgoing interface
+ if an explicit route entry exists for 255.255.255.255/32, use that one
+ else use the default route
* Broadcast packets are looped back and delivered following the rules for
incoming packets (see next). This is the same behavior as for multicast
packets, except that it cannot be disabled via sockopt.
Incoming
--------
* Sockets wishing to receive broadcast packets must bind to either INADDR_ANY
(0.0.0.0) or INADDR_BROADCAST (255.255.255.255). No other socket receives
broadcast packets.
* Broadcast packets are multiplexed to all sockets matching it. This is the
same behavior as for multicast packets.
* A socket can bind to 255.255.255.255:<port> and then receive its own
broadcast packets sent to 255.255.255.255:<port>
In addition, this change implicitly fixes an issue with multicast reception. If
two sockets want to receive a given multicast stream and one is bound to ANY
while the other is bound to the multicast address, only one of them will
receive the traffic.
PiperOrigin-RevId: 272792377
|
|
|
|
PiperOrigin-RevId: 272083936
|
|
|
|
Netstack always picks a random start point everytime PickEphemeralPort
is called. While this is required for UDP so that DNS requests go
out through a randomized set of ports it is not required for TCP. Infact
Linux explicitly hashes the (srcip, dstip, dstport) and a one time secret
initialized at start of the application to get a random offset. But to
ensure it doesn't start from the same point on every scan it uses a static
hint that is incremented by 2 in every call to pick ephemeral ports.
The reason for 2 is Linux seems to split the port ranges where active connects
seem to use even ones while odd ones are used by listening sockets.
This CL implements a similar strategy where we use a hash + hint to generate
the offset to start the search for a free Ephemeral port.
This ensures that we cycle through the available port space in order for
repeated connects to the same destination and significantly reduces the
chance of picking a recently released port.
PiperOrigin-RevId: 272058370
|
|
|
|
PiperOrigin-RevId: 271644926
|
|
|
|
Also removes the need for protocol names.
PiperOrigin-RevId: 271186030
|
|
|
|
Non-primary addresses are used for endpoints created to accept multicast and
broadcast packets, as well as "helper" endpoints (0.0.0.0) that allow sending
packets when no proper address has been assigned yet (e.g., for DHCP). These
addresses are not real addresses from a user point of view and should not be
part of the NICInfo() value. Also see b/127321246 for more info.
This switches NICInfo() to call a new NIC.PrimaryAddresses() function. To still
allow an option to get all addresses (mostly for testing) I added
Stack.GetAllAddresses() and NIC.AllAddresses().
In addition, the return value for GetMainNICAddress() was changed for the case
where the NIC has no primary address. Instead of returning an error here,
it now returns an empty AddressWithPrefix() value. The rational for this
change is that it is a valid case for a NIC to have no primary addresses.
Lastly, I refactored the code based on the new additions.
PiperOrigin-RevId: 270971764
|
|
|
|
https://github.com/golang/time/commit/c4c64ca added SetBurst upstream.
PiperOrigin-RevId: 270925077
|
|
|
|
PiperOrigin-RevId: 270763208
|
|
|
|
Previously, the only safe way to use an fdbased endpoint was to leak the FD.
This change makes it possible to safely close the FD.
This is the first step towards having stoppable stacks.
Updates #837
PiperOrigin-RevId: 270346582
|
|
|
|
PiperOrigin-RevId: 269658971
|
|
PiperOrigin-RevId: 269614517
|
|
|
|
This also allows the tee(2) implementation to be enabled, since dup can now be
properly supported via WriteTo.
Note that this change necessitated some minor restructoring with the
fs.FileOperations splice methods. If the *fs.File is passed through directly,
then only public API methods are accessible, which will deadlock immediately
since the locking is already done by fs.Splice. Instead, we pass through an
abstract io.Reader or io.Writer, which elide locks and use the underlying
fs.FileOperations directly.
PiperOrigin-RevId: 268805207
|
|
They are no-ops, so the standard rule works fine.
PiperOrigin-RevId: 268776264
|
|
|
|
PiperOrigin-RevId: 268757842
|