Age | Commit message (Collapse) | Author |
|
|
|
This change wakes up any waiters when we receive an ICMP port unreachable
control packet on an UDP socket as well as sets waiter.EventErr in
the result returned by Readiness() when e.lastError is not nil.
The latter is required where an epoll()/poll() is done after the error
is already handled since we will never notify again in such cases.
PiperOrigin-RevId: 339370469
|
|
|
|
...instead of passing its fields piecemeal.
PiperOrigin-RevId: 339345899
|
|
|
|
Updates #3921
PiperOrigin-RevId: 339195417
|
|
|
|
Fixes #4427, #4428
PiperOrigin-RevId: 338805047
|
|
|
|
Wait an additional RetransmitTimer duration after the last probe before
transitioning to Failed. The previous implementation transitions immediately to
Failed after sending the last probe, which is erroneous behavior.
PiperOrigin-RevId: 338723794
|
|
Drain the notification channel after first accept as in case the first accept
never blocked then the notification for the first accept will still be in the
channel causing the second accept to fail as it will try to wait on the channel
and return immediately due to the older notification even though there is no
connection yet in the accept queue.
PiperOrigin-RevId: 338710062
|
|
|
|
The SO_ACCEPTCONN option is used only on getsockopt(). When this option is
specified, getsockopt() indicates whether socket listening is enabled for
the socket. A value of zero indicates that socket listening is disabled;
non-zero that it is enabled.
PiperOrigin-RevId: 338703206
|
|
|
|
Previously, the NIC local address used when completing link resolution
was held in the neighbor entry. A neighbor is not identified by any
NIC local address so remove it.
PiperOrigin-RevId: 338699695
|
|
|
|
Earlier the count was dropped only after calling e.deliverAccepted. This lead to
an issue where there were no connections in SYN-RCVD state for the listening
endpoint but e.synRcvdCount would not be zero because it was being reduced only
when handleSynSegment returned after deliverAccepted returned.
This issue is seen when the Nth SYN for a listen backlog of size N which would
cause the listen backlog to be full gets dropped occasionally. This happens when
the new SYN comes at when the previous completed endpoint has been delivered to
the accept queue but the synRcvdCount hasn't yet been decremented because the
goroutine running handleSynSegment has not yet completed.
PiperOrigin-RevId: 338690646
|
|
|
|
Our current reference leak checker uses finalizers to verify whether an object
has reached zero references before it is garbage collected. There are multiple
problems with this mechanism, so a rewrite is in order.
With finalizers, there is no way to guarantee that a finalizer will run before
the program exits. When an unreachable object with a finalizer is garbage
collected, its finalizer will be added to a queue and run asynchronously. The
best we can do is run garbage collection upon sandbox exit to make sure that
all finalizers are enqueued.
Furthermore, if there is a chain of finalized objects, e.g. A points to B
points to C, garbage collection needs to run multiple times before all of the
finalizers are enqueued. The first GC run will register the finalizer for A but
not free it. It takes another GC run to free A, at which point B's finalizer
can be registered. As a result, we need to run GC as many times as the length
of the longest such chain to have a somewhat reliable leak checker.
Finally, a cyclical chain of structs pointing to one another will never be
garbage collected if a finalizer is set. This is a well-known issue with Go
finalizers (https://github.com/golang/go/issues/7358). Using leak checking on
filesystem objects that produce cycles will not work and even result in memory
leaks.
The new leak checker stores reference counted objects in a global map when
leak check is enabled and removes them once they are destroyed. At sandbox
exit, any remaining objects in the map are considered as leaked. This provides
a deterministic way of detecting leaks without relying on the complexities of
finalizers and garbage collection.
This approach has several benefits over the former, including:
- Always detects leaks of objects that should be destroyed very close to
sandbox exit. The old checker very rarely detected these leaks, because it
relied on garbage collection to be run in a short window of time.
- Panics if we forgot to enable leak check on a ref-counted object (we will try
to remove it from the map when it is destroyed, but it will never have been
added).
- Can store extra logging information in the map values without adding to the
size of the ref count struct itself. With the size of just an int64, the ref
count object remains compact, meaning frequent operations like IncRef/DecRef
are more cache-efficient.
- Can aggregate leak results in a single report after the sandbox exits.
Instead of having warnings littered in the log, which were
non-deterministically triggered by garbage collection, we can print all
warning messages at once. Note that this could also be a limitation--the
sandbox must exit properly for leaks to be detected.
Some basic benchmarking indicates that this change does not significantly
affect performance when leak checking is enabled, which is understandable
since registering/unregistering is only done once for each filesystem object.
Updates #1486.
PiperOrigin-RevId: 338685972
|
|
|
|
Previously a link endpoint was passed to
stack.LinkAddressResolver.LinkAddressRequest. With this change,
implementations that want a route for the link address request may
find one through the stack. Other implementations that want to send
a packet without a route may continue to do so using the network
interface directly.
Test: - arp_test.TestLinkAddressRequest
- ipv6.TestLinkAddressRequest
PiperOrigin-RevId: 338577474
|
|
|
|
Also enforce the minimum MTU for IPv4 and IPv6, and discard packets if the
minimum is not met.
PiperOrigin-RevId: 338404225
|
|
|
|
PiperOrigin-RevId: 338168977
|
|
|
|
PiperOrigin-RevId: 338156438
|
|
|
|
//pkg/tcpip/stack:stack_x_test_nogo
//pkg/tcpip/transport/raw:raw_nogo
PiperOrigin-RevId: 338153265
|
|
|
|
Before this change, if a link header was included in an incoming packet
that is forwarded, the packet that gets sent out will take the original
packet and add a link header to it while keeping the old link header.
This would make the sent packet look like:
OUTGOING LINK HDR | INCOMING LINK HDR | NETWORK HDR | ...
Obviously this is incorrect as we should drop the incoming link header
and only include the outgoing link header. This change fixes this bug.
Test: integration_test.TestForwarding
PiperOrigin-RevId: 337571447
|
|
|
|
The IPv4 header checksum has not been checked, at least in recent times,
so add code to do so. Fix all the tests that fail because they never
needed to set the checksum.
Fixes #4484
PiperOrigin-RevId: 337556243
|
|
|
|
Currently, fragmentation can only occur during WritePacket(). This enables
it for WritePackets() and WriteIncludedHeaderPacket() as well.
IPv4 unit tests were refactored to be consistent with the IPv6 unit tests.
This removes the extraHeaderReserveLength field and the related
"prependable bytes" unit tests (for both IPv4 and IPv6) because it was only
testing a panic condition when the value was too low.
Fixes #3796
PiperOrigin-RevId: 337550061
|
|
|
|
Allow writing an IPv6 packet where the IPv6 header is a provided by
the user.
* Introduce an error to let callers know a header is malformed.
We previously useed tcpip.ErrInvalidOptionValue but that did not seem
appropriate for generic malformed header errors.
* Populate network header in WriteHeaderIncludedPacket
IPv4's implementation of WriteHeaderIncludedPacket did not previously
populate the packet buffer's network header. This change fixes that.
Fixes #4527
Test: ip_test.TestWriteHeaderIncludedPacket
PiperOrigin-RevId: 337534548
|
|
|
|
RFC 4861 section 4.4 comments the Target link-layer address option is sometimes
optional in a Neighbor Advertisement packet:
"When responding to a unicast Neighbor Solicitation this option SHOULD be
included."
Tests:
pkg/tcpip/stack:stack_test
- TestEntryStaleToReachableWhenSolicitedConfirmationWithoutAddress
- TestEntryDelayToReachableWhenSolicitedConfirmationWithoutAddress
- TestEntryProbeToReachableWhenSolicitedConfirmationWithoutAddress
pkg/tcpip/network/ipv6:ipv6_test
- TestCallsToNeighborCache
PiperOrigin-RevId: 337396493
|
|
Test helpers should be used for test setup/teardown, not actual
testing. Use cmp.Diff instead of bytes.Equal to improve readability.
PiperOrigin-RevId: 337323242
|
|
|
|
This change also brings back the stack.Route.ResolveWith method so that
we can immediately resolve a route when sending an NA in response to a
a NS with a source link layer address option.
Test: ipv6_test.TestNeighorSolicitationResponse
PiperOrigin-RevId: 337185461
|
|
|
|
PiperOrigin-RevId: 336974095
|
|
|
|
Remove the duplicate NA size variable while I'm here.
See https://tools.ietf.org/html/rfc4861#section-4.4 for the packet format.
PiperOrigin-RevId: 336943206
|
|
|
|
Use the correct constant (Solicit, not Advert) while I'm here.
PiperOrigin-RevId: 336924605
|
|
|
|
|